43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          On the fringes of endemic zones climate is a major determinant of inter-annual variation in malaria incidence. Quantitative description of the space-time effect of this association has practical implications for the development of operational malaria early warning system (MEWS) and malaria control. We used Bayesian negative binomial models for spatio-temporal analysis of the relationship between annual malaria incidence and selected climatic covariates at a district level in Zimbabwe from 1988–1999.

          Results

          Considerable inter-annual variations were observed in the timing and intensity of malaria incidence. Annual mean values of average temperature, rainfall and vapour pressure were strong positive predictors of increased annual incidence whereas maximum and minimum temperature had the opposite effects. Our modelling approach adjusted for unmeasured space-time varying risk factors and showed that while year to year variation in malaria incidence is driven mainly by climate, the resultant spatial risk pattern may to large extent be influenced by other risk factors except during high and low risk years following the occurrence of extremely wet and dry conditions, respectively.

          Conclusion

          Our model revealed a spatially varying risk pattern that is not attributable only to climate. We postulate that only years characterized by extreme climatic conditions may be important for developing climate based MEWS and for delineating areas prone to climate driven epidemics. However, the predictive value of climatic risk factors identified in this study still needs to be evaluated.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Sampling-Based Approaches to Calculating Marginal Densities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A climate-based distribution model of malaria transmission in sub-Saharan Africa.

            Malaria remains the single largest threat to child survival in sub-Saharan Africa and warrants long-term investment for control. Previous malaria distribution maps have been vague and arbitrary. Marlies Craig, Bob Snow and David le Sueur here describe a simple numerical approach to defining distribution of malaria transmission, based upon biological constraints of climate on parasite and vector development. The model compared well with contemporary field data and historical 'expert opinion' maps, excepting small-scale ecological anomalies. The model provides a numerical basis for further refinement and prediction of the impact of climate change on transmission. Together with population, morbidity and mortality data, the model provides a fundamental tool for strategic control of malaria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change and the resurgence of malaria in the East African highlands.

              The public health and economic consequences of Plasmodium falciparum malaria are once again regarded as priorities for global development. There has been much speculation on whether anthropogenic climate change is exacerbating the malaria problem, especially in areas of high altitude where P. falciparum transmission is limited by low temperature. The International Panel on Climate Change has concluded that there is likely to be a net extension in the distribution of malaria and an increase in incidence within this range. We investigated long-term meteorological trends in four high-altitude sites in East Africa, where increases in malaria have been reported in the past two decades. Here we show that temperature, rainfall, vapour pressure and the number of months suitable for P. falciparum transmission have not changed significantly during the past century or during the period of reported malaria resurgence. A high degree of temporal and spatial variation in the climate of East Africa suggests further that claimed associations between local malaria resurgences and regional changes in climate are overly simplistic.
                Bookmark

                Author and article information

                Journal
                Int J Health Geogr
                International Journal of Health Geographics
                BioMed Central (London )
                1476-072X
                2006
                15 May 2006
                : 5
                : 20
                Affiliations
                [1 ]Malaria Research Lead Programme, Medical Research Council, P.O. Box 70380, Overport 4067, Durban, South Africa
                [2 ]Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, P.O. Box CH-4002, Basel, Switzerland
                [3 ]National Malaria Control Programme, Ministry of Health and Welfare, P.O. Box CY1122, Causeway, Harare, Zimbabwe
                [4 ]World Health Organization Southern Africa Inter-Country Programme for Malaria Control, P.O. Box CY348, Causeway, Harare, Zimbabwe
                Article
                1476-072X-5-20
                10.1186/1476-072X-5-20
                1513195
                16700905
                aad945df-94e6-4989-b96c-3af68f005e23
                Copyright © 2006 Mabaso et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 March 2006
                : 15 May 2006
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content161

                Cited by53

                Most referenced authors371