18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Polymorphism of Toll-Like Receptors and Lung Function at Five to Seven Years of Age after Infant Bronchiolitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Toll-like receptors (TLR) play a crucial role in innate immunity, protecting the host from pathogens such as viruses. Genetic variations in TLRs have been associated with the severity of viral bronchiolitis in infancy and with the later occurrence of post-bronchiolitis asthma. The aim of the present study was to evaluate if there are any exploratory associations between TLR gene polymorphisms and lung function at 5 to 7 years of age in former bronchiolitis patients.

          Methods

          We performed impulse oscillometry (IOS) at the median age of 6.3 years for 103 children who had been hospitalized for bronchiolitis at less than six months of age. The main parameters evaluated were airway resistance and reactance at 5Hz in baseline and post-exercise measurements. Data on single nucleotide polymorphisms (SNP) of TLR1 rs5743618, TLR2 rs5743708, TLR6 rs5743810 and TLR10 rs4129009 (TLR2 subfamily) and TLR3 rs3775291, TLR4 rs4986790, TLR7 rs179008, TLR8 rs2407992 and TLR 9 rs187084 were available for analyses.

          Results

          The TLR4 rs4986790 wild genotype A/A was associated with a greater Rrs5 response (0.72 vs. -0.42, p = 0.03) to exercise. In TLR6 rs5743810, the minor allele T was associated with greater Rrs5 response (0.80 vs. -0.03, p = 0.04) to exercise. In TLR7 rs179008, the major allele A was associated with baseline decline in dRrs/df (-1.03 vs 0.61, p = 0.01) and increased Fres (2.28 vs. 0.89, p = 0.01) in girls.

          Conclusion

          Among the nine studied TLRs, only TLR7 rs179008 showed some exploratory associations with post-bronchiolitis lung function deficiency, and polymorphisms of TLR4 rs4986790, and TLR6 rs5743810 in particular, with airway reactivity. These findings call for further confirmatory studies.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptors in the pathogenesis of human disease.

          Members of the Toll-like receptor (TLR) family are key regulators of both innate and adaptive immune responses. The function of TLRs in various human diseases has been investigated by comparison of the incidence of disease among people having different polymorphisms in genes that participate in TLR signaling. These studies have shown that TLR function affects several diseases, including sepsis, immunodeficiencies, atherosclerosis and asthma. As this body of data grows, it will provide new insights into disease pathogenesis as well as valuable information on the merits of various therapeutic options.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The forced oscillation technique in clinical practice: methodology, recommendations and future developments.

            The forced oscillation technique (FOT) is a noninvasive method with which to measure respiratory mechanics. FOT employs small-amplitude pressure oscillations superimposed on the normal breathing and therefore has the advantage over conventional lung function techniques that it does not require the performance of respiratory manoeuvres. The present European Respiratory Society Task Force Report describes the basic principle of the technique and gives guidelines for the application and interpretation of FOT as a routine lung function test in the clinical setting, for both adult and paediatric populations. FOT data, especially those measured at the lower frequencies, are sensitive to airway obstruction, but do not discriminate between obstructive and restrictive lung disorders. There is no consensus regarding the sensitivity of FOT for bronchodilation testing in adults. Values of respiratory resistance have proved sensitive to bronchodilation in children, although the reported cutoff levels remain to be confirmed in future studies. Forced oscillation technique is a reliable method in the assessment of bronchial hyperresponsiveness in adults and children. Moreover, in contrast with spirometry where a deep inspiration is needed, forced oscillation technique does not modify the airway smooth muscle tone. Forced oscillation technique has been shown to be as sensitive as spirometry in detecting impairments of lung function due to smoking or exposure to occupational hazards. Together with the minimal requirement for the subject's cooperation, this makes forced oscillation technique an ideal lung function test for epidemiological and field studies. Novel applications of forced oscillation technique in the clinical setting include the monitoring of respiratory mechanics during mechanical ventilation and sleep.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests.

              Testing many null hypotheses in a single study results in an increased probability of detecting a significant finding just by chance (the problem of multiplicity). Debates have raged over many years with regard to whether to correct for multiplicity and, if so, how it should be done. This article first discusses how multiple tests lead to an inflation of the α level, then explores the following different contexts in which multiplicity arises: testing for baseline differences in various types of studies, having >1 outcome variable, conducting statistical tests that produce >1 P value, taking multiple "peeks" at the data, and unplanned, post hoc analyses (i.e., "data dredging," "fishing expeditions," or "P-hacking"). It then discusses some of the methods that have been proposed for correcting for multiplicity, including single-step procedures (e.g., Bonferroni); multistep procedures, such as those of Holm, Hochberg, and Šidák; false discovery rate control; and resampling approaches. Note that these various approaches describe different aspects and are not necessarily mutually exclusive. For example, resampling methods could be used to control the false discovery rate or the family-wise error rate (as defined later in this article). However, the use of one of these approaches presupposes that we should correct for multiplicity, which is not universally accepted, and the article presents the arguments for and against such "correction." The final section brings together these threads and presents suggestions with regard to when it makes sense to apply the corrections and how to do so.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 January 2016
                2016
                : 11
                : 1
                : e0146526
                Affiliations
                [1 ]Tampere Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
                [2 ]Department of Medical Microbiology and Immunology, Turku University, Turku, Finland
                [3 ]Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
                [4 ]Seinäjoki Central Hospital, Seinäjoki, Finland
                [5 ]Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
                [6 ]Department of Clinical Physiology, Turku University Hospital, Turku, Finland
                IISER-TVM, INDIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PK KN JOT MH QH MK. Performed the experiments: PK JV JT KN JOT. Analyzed the data: EL PK MK. Contributed reagents/materials/analysis tools: JOT MH QH MK. Wrote the paper: EL PK JV JT KN MH QH MK.

                Article
                PONE-D-15-31220
                10.1371/journal.pone.0146526
                4704821
                26741133
                aaae50a8-ce33-49ff-b516-b0c5eaa1baae
                © 2016 Lauhkonen et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 16 July 2015
                : 19 December 2015
                Page count
                Figures: 0, Tables: 7, Pages: 13
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article