3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.

          Related collections

          Most cited references235

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

          Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-homologous DNA end joining and alternative pathways to double-strand break repair

            In mammalian cells, DNA double-strand breaks (DSBs) are repaired predominantly by the non-homologous end joining (NHEJ) pathway, which includes subpathways that can repair different DNA-end configurations. Furthermore, the repair of some DNA-end configurations can be shunted to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA double-strand break repair-pathway choice in somatic mammalian cells

              The major pathways of DNA double strand break (DSB) repair have key roles in suppressing genomic instability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. Two major mechanisms of DSB repair predominate in mammalian cells, namely homologous recombination and non-homologous end joining. In this Review, we outline a ‘decision tree’ of DSB repair pathway choice in somatic mammalian cells, and consider how DSB repair dysfunction can lead to genomic instability. Stalled or broken replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the ‘rules’ governing stalled fork repair pathway choice differ from those that operate at a conventional DSB.
                Bookmark

                Author and article information

                Contributors
                safa.m@iums.ac.ir
                Journal
                Exp Hematol Oncol
                Exp Hematol Oncol
                Experimental Hematology & Oncology
                BioMed Central (London )
                2162-3619
                3 November 2021
                3 November 2021
                2021
                : 10
                : 51
                Affiliations
                [1 ]GRID grid.411746.1, ISNI 0000 0004 4911 7066, Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, , Iran University of Medical Sciences, ; Tehran, Iran
                [2 ]Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
                [3 ]GRID grid.261128.e, ISNI 0000 0000 9003 8934, Medical Laboratory Sciences, Program, College of Health and Human Sciences, , Northern Illinois University, ; DeKalb, IL USA
                Author information
                http://orcid.org/0000-0003-0070-6620
                Article
                242
                10.1186/s40164-021-00242-1
                8564991
                34732266
                a947c117-8ec1-429c-aa71-e793527a64c4
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 August 2021
                : 13 October 2021
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                double-strand break,double-strand break repair,non-homologous end-joining,alternative end-joining pathways,hematologic malignancies,targeted therapy

                Comments

                Comment on this article