9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Loss of nonhomologous end joining confers camptothecin resistance in DT40 cells. Implications for the repair of topoisomerase I-mediated DNA damage.

      The Journal of Biological Chemistry
      Antineoplastic Agents, pharmacology, Camptothecin, Cell Line, DNA Damage, DNA Repair, DNA Replication, DNA Topoisomerases, Type I, metabolism, Drug Resistance, Recombination, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA topoisomerase I (Top1) generates transient DNA single-strand breaks via the formation of cleavage complexes in which the enzyme is linked to the 3'-phosphate of the cleavage strand. The anticancer drug camptothecin (CPT) poisons Top1 by trapping cleavage complexes, thereby inducing Top1-linked single-strand breaks. Such DNA lesions are converted into DNA double-strand breaks (DSBs) upon collision with replication forks, implying that DSB repair pathways could be involved in the processing/repair of Top1-mediated DNA damage. Here we report that Top1-mediated DNA damage is repaired primarily by homologous recombination, a major pathway of DSB repair. Unexpectedly, however, we found that nonhomologous end joining (NHEJ), another DSB repair pathway, has no positive role in the relevant repair; notably, DT40 cell mutants lacking either of the NHEJ factors (namely, Ku70, DNA-dependent protein kinase catalytic subunit, and DNA ligase IV) were resistant to killing by CPT. In addition, we showed that the absence of NHEJ alleviates the requirement of homologous recombination in the repair of CPT-induced DNA damage. Our results indicate that NHEJ can be a cytotoxic pathway in the presence of CPT, shedding new light on the molecular mechanisms for the formation and repair of Top1-mediated DNA damage in vertebrates. Thus, our data have significant implications for cancer chemotherapy involving Top1 inhibitors.

          Related collections

          Author and article information

          Comments

          Comment on this article