184
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Control of Jasmonate Biosynthesis and Senescence by miR319 Targets

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP ( TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.

          Author Summary

          Short, single-stranded RNA molecules called microRNAs (miRNAs) regulate gene expression by negatively controlling both the stability and translation of target messenger RNAs that they recognize through sequence complementarity. In plants, miRNAs mostly regulate other regulators, the DNA-binding transcription factors. We investigated the downstream events regulated by five TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factors that are controlled by the microRNA miR319 in Arabidopsis thaliana. The miR319-regulated TCPs were previously known to be important for limiting the growth of leaves. By applying a combination of genome-wide, biochemical, and genetic studies, we identified new TCP targets that include enzymes responsible for the synthesis of the hormone jasmonic acid. Our analysis of leaf extracts from plants with increased activity of miR319 confirms that altered expression of the biosynthetic genes leads to changed jasmonic acid levels. These plants show also an altered senescence behavior that becomes more normal again when the plants are treated with jasmonate. We propose that the miR319-regulated TCP factors thus coordinate different aspects of leaf development and physiology: growth, which they negatively regulate, and aging, which they positively regulate.

          Abstract

          A plant microRNA and its targets turn out to regulate both early and late stages of leaf development: early on, they inhibit growth, while later on, they promote the onset of senescence.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.

          MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development.

            X. Chen (2004)
            Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, I show that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.

              To better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of heterochromatic small interfering RNAs (siRNAs) associated with DNA silencing in that they were preferentially 24 nucleotides long and mapped to intergenic regions. Their density was greatest in the proximal and distal pericentromeric regions, with only a slightly preferential propensity to match repetitive elements. Also present were 38 newly identified microRNAs (miRNAs) and dozens of other plausible candidates. One miRNA mapped within an intron of DICER-LIKE 1 (DCL1), suggesting a second homeostatic autoregulatory mechanism for DCL1 expression; another defined the phase for siRNAs deriving from a newly identified trans-acting siRNA gene (TAS4); and two depended on DCL4 rather than DCL1 for their accumulation, indicating a second pathway for miRNA biogenesis in plants. More generally, our results revealed the existence of a layer of miRNA-based control beyond that found previously that is evolutionarily much more fluid, employing many newly emergent and diverse miRNAs, each expressed in specialized tissues or at low levels under standard growth conditions.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                September 2008
                23 September 2008
                : 6
                : 9
                : e230
                Affiliations
                [1 ] Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
                [2 ] Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
                [3 ] Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
                [4 ] Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
                [5 ] Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, Spain
                Oregon State University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: weigel@ 123456weigelworld.org
                Article
                07-PLBI-RA-0598R3 plbi-06-09-13
                10.1371/journal.pbio.0060230
                2553836
                18816164
                a7d08b44-6792-46ba-88ca-81f7bf7752b4
                Copyright: © 2008 Schommer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 March 2008
                : 13 August 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics
                Plant Biology
                Custom metadata
                Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, et al. (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9): e230. doi: 10.1371/journal.pbio.0060230

                Life sciences
                Life sciences

                Comments

                Comment on this article