2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Performing a statistical test requires a null hypothesis. In cancer genomics, a key challenge is the fast generation of accurate somatic mutational landscapes that can be used as a realistic null hypothesis for making biological discoveries.

          Results

          Here we present SigProfilerSimulator, a powerful tool that is capable of simulating the mutational landscapes of thousands of cancer genomes at different resolutions within seconds. Applying SigProfilerSimulator to 2144 whole-genome sequenced cancers reveals: (i) that most doublet base substitutions are not due to two adjacent single base substitutions but likely occur as single genomic events; (ii) that an extended sequencing context of ± 2 bp is required to more completely capture the patterns of substitution mutational signatures in human cancer; (iii) information on false-positive discovery rate of commonly used bioinformatics tools for detecting driver genes.

          Conclusions

          SigProfilerSimulator’s breadth of features allows one to construct a tailored null hypothesis and use it for evaluating the accuracy of other bioinformatics tools or for downstream statistical analysis for biological discoveries. SigProfilerSimulator is freely available at https://github.com/AlexandrovLab/SigProfilerSimulator with an extensive documentation at https://osf.io/usxjz/wiki/home/.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

          The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over ten-thousand tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers (MC3) project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects. The MC3 project is a variant calling of over 10,000 cancer exome samples from 33 cancer types. Over 3 million somatic variants were detected using 7 different methods developed from institutions across the United States. These variants formed the basis for the PanCan Atlas papers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diverse somatic mutation patterns and pathway alterations in human cancers.

            The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mutational signatures: the patterns of somatic mutations hidden in cancer genomes☆

              All cancers originate from a single cell that starts to behave abnormally due to the acquired somatic mutations in its genome. Until recently, the knowledge of the mutational processes that cause these somatic mutations has been very limited. Recent advances in sequencing technologies and the development of novel mathematical approaches have allowed deciphering the patterns of somatic mutations caused by different mutational processes. Here, we summarize our current understanding of mutational patterns and mutational signatures in light of both the somatic cell paradigm of cancer research and the recent developments in the field of cancer genomics.
                Bookmark

                Author and article information

                Contributors
                L2alexandrov@health.ucsd.edu
                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                7 October 2020
                7 October 2020
                2020
                : 21
                : 438
                Affiliations
                [1 ]GRID grid.266100.3, ISNI 0000 0001 2107 4242, Department of Cellular and Molecular Medicine, , University of California, San Diego, ; La Jolla, CA 92093 USA
                [2 ]GRID grid.266100.3, ISNI 0000 0001 2107 4242, Department of Bioengineering, , University of California, San Diego, ; La Jolla, CA 92093 USA
                [3 ]GRID grid.10306.34, ISNI 0000 0004 0606 5382, Cancer, Ageing and Somatic Mutation, , Wellcome Sanger Institute, ; Hinxton, CB10 1SA Cambridgeshire UK
                Author information
                http://orcid.org/0000-0003-3596-4515
                Article
                3772
                10.1186/s12859-020-03772-3
                7539472
                33028213
                a7b5ba8e-05f8-4330-ae85-e5714111688a
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 February 2020
                : 22 September 2020
                Funding
                Funded by: Cancer Research UK Grand Challenge
                Award ID: C98/A24032
                Award Recipient :
                Categories
                Software
                Custom metadata
                © The Author(s) 2020

                Bioinformatics & Computational biology
                somatic mutations,mutational patterns,mutational signatures

                Comments

                Comment on this article