18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Combined sequence and sequence-structure-based methods for analyzing RAAS gene SNPs: a computational approach

      ,
      Journal of Receptors and Signal Transduction
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure (BP). Mutations on the genes that encode components of the RAAS have played a significant role in genetic susceptibility to hypertension and have been intensively scrutinized. The identification of such probably causal mutations not only provides insight into the RAAS but may also serve as antihypertensive therapeutic targets and diagnostic markers. The methods for analyzing the SNPs from the huge dataset of SNPs, containing both functional and neutral SNPs is challenging by the experimental approach on every SNPs to determine their biological significance. To explore the functional significance of genetic mutation (SNPs), we adopted combined sequence and sequence-structure-based SNP analysis algorithm. Out of 3864 SNPs reported in dbSNP, we found 108 missense SNPs in the coding region and remaining in the non-coding region. In this study, we are reporting only those SNPs in coding region to be deleterious when three or more tools are predicted to be deleterious and which have high RMSD from the native structure. Based on these analyses, we have identified two SNPs of REN gene, eight SNPs of AGT gene, three SNPs of ACE gene, two SNPs of AT1R gene, three SNPs of CYP11B2 gene and three SNPs of CMA1 gene in the coding region were found to be deleterious. Further this type of study will be helpful in reducing the cost and time for identification of potential SNP and also helpful in selecting potential SNP for experimental study out of SNP pool.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.

          In this study, we have revised the rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, based on better physical description of the desolvation and dielectric response for the protein. We have introduced a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since the goal of this study is to lay out the framework and validate the concept, it focuses on Asp and Glu residues where the protein pKa values and structures are assumed to be more reliable. The new and improved implementation is evaluated and discussed; it is found to agree better with experiment than the previous implementation (in parentheses): rmsd = 0.79 (0.91) for Asp and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most significant advance, however, is in reducing the number of outliers and removing unreasonable sensitivity to small structural changes that arise from classifying residues as either internal or surface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human non-synonymous SNPs: server and survey.

            Human single nucleotide polymorphisms (SNPs) represent the most frequent type of human population DNA variation. One of the main goals of SNP research is to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. Non-synonymous coding SNPs (nsSNPs) comprise a group of SNPs that, together with SNPs in regulatory regions, are believed to have the highest impact on phenotype. Here we present a World Wide Web server to predict the effect of an nsSNP on protein structure and function. The prediction method enabled analysis of the publicly available SNP database HGVbase, which gave rise to a dataset of nsSNPs with predicted functionality. The dataset was further used to compare the effect of various structural and functional characteristics of amino acid substitutions responsible for phenotypic display of nsSNPs. We also studied the dependence of selective pressure on the structural and functional properties of proteins. We found that in our dataset the selection pressure against deleterious SNPs depends on the molecular function of the protein, although it is insensitive to several other protein features considered. The strongest selective pressure was detected for proteins involved in transcription regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Very fast empirical prediction and rationalization of protein pKa values.

              A very fast empirical method is presented for structure-based protein pKa prediction and rationalization. The desolvation effects and intra-protein interactions, which cause variations in pKa values of protein ionizable groups, are empirically related to the positions and chemical nature of the groups proximate to the pKa sites. A computer program is written to automatically predict pKa values based on these empirical relationships within a couple of seconds. Unusual pKa values at buried active sites, which are among the most interesting protein pKa values, are predicted very well with the empirical method. A test on 233 carboxyl, 12 cysteine, 45 histidine, and 24 lysine pKa values in various proteins shows a root-mean-square deviation (RMSD) of 0.89 from experimental values. Removal of the 29 pKa values that are upper or lower limits results in an RMSD = 0.79 for the remaining 285 pKa values. Proteins 2005. 2005 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Journal of Receptors and Signal Transduction
                Journal of Receptors and Signal Transduction
                Informa UK Limited
                1079-9893
                1532-4281
                August 28 2014
                May 30 2014
                : 34
                : 6
                : 513-526
                Article
                10.3109/10799893.2014.922575
                24878201
                a76e973f-8aef-48e4-b6ff-5d1ae3af4091
                © 2014
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,962

                Cited by6

                Most referenced authors1,385