48
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Application of Internet-Based Sources for Public Health Surveillance (Infoveillance): Systematic Review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Public health surveillance is based on the continuous and systematic collection, analysis, and interpretation of data. This informs the development of early warning systems to monitor epidemics and documents the impact of intervention measures. The introduction of digital data sources, and specifically sources available on the internet, has impacted the field of public health surveillance. New opportunities enabled by the underlying availability and scale of internet-based sources (IBSs) have paved the way for novel approaches for disease surveillance, exploration of health communities, and the study of epidemic dynamics. This field and approach is also known as infodemiology or infoveillance.

          Objective

          This review aimed to assess research findings regarding the application of IBSs for public health surveillance (infodemiology or infoveillance). To achieve this, we have presented a comprehensive systematic literature review with a focus on these sources and their limitations, the diseases targeted, and commonly applied methods.

          Methods

          A systematic literature review was conducted targeting publications between 2012 and 2018 that leveraged IBSs for public health surveillance, outbreak forecasting, disease characterization, diagnosis prediction, content analysis, and health-topic identification. The search results were filtered according to previously defined inclusion and exclusion criteria.

          Results

          Spanning a total of 162 publications, we determined infectious diseases to be the preferred case study (108/162, 66.7%). Of the eight categories of IBSs (search queries, social media, news, discussion forums, websites, web encyclopedia, and online obituaries), search queries and social media were applied in 95.1% (154/162) of the reviewed publications. We also identified limitations in representativeness and biased user age groups, as well as high susceptibility to media events by search queries, social media, and web encyclopedias.

          Conclusions

          IBSs are a valuable proxy to study illnesses affecting the general population; however, it is important to characterize which diseases are best suited for the available sources; the literature shows that the level of engagement among online platforms can be a potential indicator. There is a necessity to understand the population’s online behavior; in addition, the exploration of health information dissemination and its content is significantly unexplored. With this information, we can understand how the population communicates about illnesses online and, in the process, benefit public health.

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: not found

          Using internet searches for influenza surveillance.

          The Internet is an important source of health information. Thus, the frequency of Internet searches may provide information regarding infectious disease activity. As an example, we examined the relationship between searches for influenza and actual influenza occurrence. Using search queries from the Yahoo! search engine ( http://search.yahoo.com ) from March 2004 through May 2008, we counted daily unique queries originating in the United States that contained influenza-related search terms. Counts were divided by the total number of searches, and the resulting daily fraction of searches was averaged over the week. We estimated linear models, using searches with 1-10-week lead times as explanatory variables to predict the percentage of cultures positive for influenza and deaths attributable to pneumonia and influenza in the United States. With use of the frequency of searches, our models predicted an increase in cultures positive for influenza 1-3 weeks in advance of when they occurred (P < .001), and similar models predicted an increase in mortality attributable to pneumonia and influenza up to 5 weeks in advance (P < .001). Search-term surveillance may provide an additional tool for disease surveillance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic

            Social media have been proposed as a data source for influenza surveillance because they have the potential to offer real-time access to millions of short, geographically localized messages containing information regarding personal well-being. However, accuracy of social media surveillance systems declines with media attention because media attention increases “chatter” – messages that are about influenza but that do not pertain to an actual infection – masking signs of true influenza prevalence. This paper summarizes our recently developed influenza infection detection algorithm that automatically distinguishes relevant tweets from other chatter, and we describe our current influenza surveillance system which was actively deployed during the full 2012-2013 influenza season. Our objective was to analyze the performance of this system during the most recent 2012–2013 influenza season and to analyze the performance at multiple levels of geographic granularity, unlike past studies that focused on national or regional surveillance. Our system’s influenza prevalence estimates were strongly correlated with surveillance data from the Centers for Disease Control and Prevention for the United States (r = 0.93, p < 0.001) as well as surveillance data from the Department of Health and Mental Hygiene of New York City (r = 0.88, p < 0.001). Our system detected the weekly change in direction (increasing or decreasing) of influenza prevalence with 85% accuracy, a nearly twofold increase over a simpler model, demonstrating the utility of explicitly distinguishing infection tweets from other chatter.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              When Google got flu wrong.

                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                March 2020
                13 March 2020
                : 22
                : 3
                : e13680
                Affiliations
                [1 ] Insight Centre for Data Analytics National University of Ireland Galway Galway Ireland
                [2 ] School of Computer Science National University of Ireland Galway Galway Ireland
                [3 ] ZB MED - Information Centre for Life Sciences University Cologne Cologne Germany
                Author notes
                Corresponding Author: Joana M Barros joana.barros@ 123456insight-centre.org
                Author information
                https://orcid.org/0000-0002-2952-5420
                https://orcid.org/0000-0002-7507-8617
                https://orcid.org/0000-0002-1018-0370
                Article
                v22i3e13680
                10.2196/13680
                7101503
                32167477
                a73f6860-9a4d-4de3-ab59-f5f58edf3d74
                ©Joana M Barros, Jim Duggan, Dietrich Rebholz-Schuhmann. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 13.03.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 24 February 2019
                : 18 May 2019
                : 18 September 2019
                : 26 November 2019
                Categories
                Review
                Review

                Medicine
                medical informatics,public health informatics,public health,infectious diseases,chronic diseases,infodemiology,infoveillance

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content320

                Cited by60

                Most referenced authors1,475