4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circular RNA hsa_circ_0043688 serves as a competing endogenous RNA for microRNA‐145‐5p to promote the progression of Keloids via Fibroblast growth factor‐2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Keloids are benign fibroproliferative skin tumors. Circular RNA (circRNA) hsa_circ_0043688 has been exhibited to the freakishly expressed in keloid tissues. Here, we aimed to investigate the regulatory network of hsa_circ_0043688 in the pathological process of keloid.

          Methods

          Hsa_circ_0043688, microRNA‐145‐5p (miR‐145‐5p), and Fibroblast growth factor‐2 (FGF2) level were detected using RT‐qPCR. Cell viability, proliferation, apoptosis, invasion, and migration were investigated using Cell Counting Kit‐8 (CCK‐8), 5‐ethynyl‐2′‐deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays, respectively. Western blot analysis of protein levels of FGF2, CyclinD1, Collagen I, and Collagen III. After the prediction of Circinteractome and Starbase, their interaction was verified based on a dual‐luciferase reporter and RIP assays.

          Results

          Increased hsa_circ_0043688 and FGF2, and decreased miR‐145‐5p in keloids samples and fibroblasts were found. Also, hsa_circ_0043688 absence hindered proliferation, invasion, migration, and boost apoptosis of keloid fibroblasts. In mechanism, hsa_circ_0043688 modulated FGF2 content via sponging miR‐145‐5p.

          Conclusion

          Hsa_circ_0043688 knockdown inhibited cell growth and metastasis of keloid fibroblasts via miR‐145‐5p/FGF2, providing a new mechanism to understand the keloid progression.

          Abstract

          Circ_0043688 could regulate proliferation, migration, invasion, and ECM production of keloid fibroblasts by targeting the miR‐145‐5p/FGF2 axis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Natural RNA circles function as efficient microRNA sponges.

          MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels of miR-7 targets. In the mouse brain, we observe overlapping co-expression of ciRS-7 and miR-7, particularly in neocortical and hippocampal neurons, suggesting a high degree of endogenous interaction. We further show that the testis-specific circRNA, sex-determining region Y (Sry), serves as a miR-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biogenesis, biology and characterization of circular RNAs

            Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              circRNA biogenesis competes with pre-mRNA splicing.

              Circular RNAs (circRNAs) are widely expressed noncoding RNAs. However, their biogenesis and possible functions are poorly understood. Here, by studying circRNAs that we identified in neuronal tissues, we provide evidence that animal circRNAs are generated cotranscriptionally and that their production rate is mainly determined by intronic sequences. We demonstrate that circularization and splicing compete against each other. These mechanisms are tissue specific and conserved in animals. Interestingly, we observed that the second exon of the splicing factor muscleblind (MBL/MBNL1) is circularized in flies and humans. This circRNA (circMbl) and its flanking introns contain conserved muscleblind binding sites, which are strongly and specifically bound by MBL. Modulation of MBL levels strongly affects circMbl biosynthesis, and this effect is dependent on the MBL binding sites. Together, our data suggest that circRNAs can function in gene regulation by competing with linear splicing. Furthermore, we identified muscleblind as a factor involved in circRNA biogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                feizhu1234560427@163.com
                63610407@qq.com
                Journal
                J Clin Lab Anal
                J Clin Lab Anal
                10.1002/(ISSN)1098-2825
                JCLA
                Journal of Clinical Laboratory Analysis
                John Wiley and Sons Inc. (Hoboken )
                0887-8013
                1098-2825
                26 June 2022
                August 2022
                : 36
                : 8 ( doiID: 10.1002/jcla.v36.8 )
                : e24528
                Affiliations
                [ 1 ] Department of Plastic Surgery The First Affiliated Hospital of Anhui Medical University Hefei China
                Author notes
                [*] [* ] Correspondence

                Fei Zhu and Xiaojing Li, Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, No, 218, Jixi Road, Hefei 230061, China.

                Emails: feizhu1234560427@ 123456163.com ; 63610407@ 123456qq.com

                Author information
                https://orcid.org/0000-0002-3282-6267
                Article
                JCLA24528 JCLA-22-777.R1
                10.1002/jcla.24528
                9396203
                35754140
                a71718ed-6d22-4867-8d04-fc1f1757d6c2
                © 2022 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 05 May 2022
                : 21 March 2022
                : 18 May 2022
                Page count
                Figures: 9, Tables: 1, Pages: 11, Words: 4920
                Funding
                Funded by: regulation of the inflammation by TSG‐6 and its mechanism in pathological scar
                Award ID: 81272107
                Funded by: the Key Science and Technology Project of Anhui Province
                Award ID: 1604a0802078
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                August 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.7 mode:remove_FC converted:23.08.2022

                Clinical chemistry
                fgf2,hsa_circ_0043688,keloid fibroblasts,mir‐145‐5p,proliferation
                Clinical chemistry
                fgf2, hsa_circ_0043688, keloid fibroblasts, mir‐145‐5p, proliferation

                Comments

                Comment on this article