Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      First Lunar Flashes Observed from Morocco (ILIAD Network): Implications for Lunar Seismology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data.

          Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Martian cratering 8: Isochron refinement and the chronology of Mars

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The flux of small near-Earth objects colliding with the Earth

              Asteroids with diameters smaller than approximately 50-100 m that collide with the Earth usually do not hit the ground as a single body; rather, they detonate in the atmosphere. These small objects can still cause considerable damage, such as occurred near Tunguska, Siberia, in 1908. The flux of small bodies is poorly constrained, however, in part because ground-based observational searches pursue strategies that lead them preferentially to find larger objects. A Tunguska-class event-the energy of which we take to be equivalent to 10 megatons of TNT-was previously estimated to occur every 200-300 years, with the largest annual airburst calculated to be approximately 20 kilotons (kton) TNT equivalent (ref. 4). Here we report satellite records of bolide detonations in the atmosphere over the past 8.5 years. We find that the flux of objects in the 1-10-m size range has the same power-law distribution as bodies with diameters >50 m. From this we estimate that the Earth is hit on average annually by an object with approximately 5 kton equivalent energy, and that Tunguska-like events occur about once every 1,000 years.
                Bookmark

                Author and article information

                Journal
                Earth, Moon, and Planets
                Earth Moon Planets
                Springer Nature
                0167-9295
                1573-0794
                July 2015
                March 4 2015
                July 2015
                : 115
                : 1-4
                : 1-21
                Article
                10.1007/s11038-015-9462-1
                a6f23625-2da2-46a2-9a0f-05b7dcca23f5
                © 2015
                History

                Comments

                Comment on this article