10
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative analysis of COVID-19 responses in Japan and Africa: diet, phytochemicals, vitamin D, and gut microbiota in reducing mortality—A systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As the novel coronavirus disease 2019 (COVID-19) pandemic subsides, the clinical sequelae are becoming more problematic. Interestingly, the statistical data indicate that Africa has experienced the lowest number of cases and deaths, with an unexpected phenomenon where the number of deaths from COVID-19 has not increased significantly. Several studies have investigated the relationship between diet and coronavirus. However, no systematic review/meta-analysis has conclusively linked diet (phytochemicals and vitamin D) and the gut microbiota in the context of COVID-19.

          Methods

          This study examined the responses to COVID-19 in Japan and Africa, formulating the following hypotheses: (1) a healthy diet is effective against COVID-19, (2) blood vitamin D levels are associated with COVID-19 mortality, and (3) COVID-19 is associated with the gut microbiota. To investigate these hypotheses, a keyword search and meta-analysis were conducted using PubMed, and each hypothesis was tested.

          Results

          This study found that a healthy diet, particularly rich in phytochemicals such as polyphenols and flavonoids, is effective against COVID-19. An association was detected between blood vitamin D levels and COVID-19 mortality. The gut microbiota was linked to COVID-19 and its amelioration. These findings may have significant implications for not only understanding COVID-19 but also future prevention of pneumonia.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An obesity-associated gut microbiome with increased capacity for energy harvest.

            The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.

              Gut microbial composition depends on different dietary habits just as health depends on microbial metabolism, but the association of microbiota with different diets in human populations has not yet been shown. In this work, we compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture. By using high-throughput 16S rDNA sequencing and biochemical analyses, we found significant differences in gut microbiota between the two groups. BF children showed a significant enrichment in Bacteroidetes and depletion in Firmicutes (P < 0.001), with a unique abundance of bacteria from the genus Prevotella and Xylanibacter, known to contain a set of bacterial genes for cellulose and xylan hydrolysis, completely lacking in the EU children. In addition, we found significantly more short-chain fatty acids (P < 0.001) in BF than in EU children. Also, Enterobacteriaceae (Shigella and Escherichia) were significantly underrepresented in BF than in EU children (P < 0.05). We hypothesize that gut microbiota coevolved with the polysaccharide-rich diet of BF individuals, allowing them to maximize energy intake from fibers while also protecting them from inflammations and noninfectious colonic diseases. This study investigates and compares human intestinal microbiota from children characterized by a modern western diet and a rural diet, indicating the importance of preserving this treasure of microbial diversity from ancient rural communities worldwide.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                07 October 2024
                2024
                : 11
                : 1465324
                Affiliations
                [1] 1Faculty of Medical Sciences, Juntendo University , Chiba, Japan
                [2] 2Department of Biotechnology, Tokyo College of Biotechnology , Tokyo, Japan
                [3] 3Institute of Tropical Medicine, Nagasaki University , Nagasaki, Japan
                [4] 4Yokohama University of Pharmacy , Kanagawa, Japan
                [5] 5Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University , Tokyo, Japan
                Author notes

                Edited by: Francesca Gorini, National Research Council (CNR), Italy

                Reviewed by: Ravindra Veeranna, National Institutes of Health (NIH), United States

                Somia Iqtadar, King Edward Medical University, Pakistan

                Salvatore Vaccaro, IRCCS Local Health Authority of Reggio Emilia, Italy

                *Correspondence: Raita Tamaki, tamakir@ 123456nagasaki-u.ac.jp
                Article
                10.3389/fnut.2024.1465324
                11492870
                39434894
                a69d872b-12d1-4e21-9eaa-b4cf5a6fe669
                Copyright © 2024 Santa, Tamaki, Watanabe and Nagaoka.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 July 2024
                : 13 August 2024
                Page count
                Figures: 5, Tables: 12, Equations: 0, References: 151, Pages: 23, Words: 17575
                Funding
                The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the JSPS KAKENHI (grant nos.: 20K07486 and 23K06549).
                Categories
                Nutrition
                Original Research
                Custom metadata
                Clinical Nutrition

                covid-19,phytochemicals,polyphenols,flavonoids,vitamin d,gut microbiota,japan,africa

                Comments

                Comment on this article