Associations between e-health literacy and chronic disease self-management in older Chinese patients with chronic non-communicable diseases: a mediation analysis
There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Background
Chronic non-communicable diseases (CNCDs) are an urgent public health issue in China,
especially among older adults. Hence, self-management is crucial for disease progression
and treatment. Electronic health (e-health) literacy and self-efficacy positively
correlate with self-management. However, we know little about their underlying mechanisms
in older adults with CNCDs.
Objective
To explore the factors that influence chronic disease self-management (CDSM) and verify
self-efficacy as the mediator between e-health literacy and self-management behavior
in older patients with CNCDs.
Methods
This cross-sectional study included 289 older patients with CNCDs from Hunan province,
China, between July and November 2021. E-health literacy, self-efficacy, social support,
and CDSM data were collected through questionnaires. The influence of each factor
on CDSM was explored with multiple linear regression analysis. Intermediary effects
were computed via a structural equation model.
Results
The total CDSM score in the patients was 29.39 ± 9.60 and only 46 (15.92%) patients
used smart healthcare devices. The regression analysis showed e-health literacy, self-efficacy,
and social support were the factors that affected CDSM. Furthermore, the structural
equation model revealed that self-efficacy directly affected CDSM (
β = 0.45,
P < 0.01), whereas e-health literacy affected it directly (
β = 0.42,
P < 0.01) and indirectly (
β = 0.429,
P < 0.01) through self-efficacy.
Conclusions
This study revealed that self-management among older patients with CNCDs is at a low
level, and few of them use smart healthcare devices. Self-efficacy plays a partial
intermediary role between e-health literacy and self-management in older patients
with CNCDs. Thus, efforts to improve their CDSM by targeting e-health literacy may
be more effective when considering self-efficacy.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12889-022-14695-4.
Summary Background Public health is a priority for the Chinese Government. Evidence-based decision making for health at the province level in China, which is home to a fifth of the global population, is of paramount importance. This analysis uses data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to help inform decision making and monitor progress on health at the province level. Methods We used the methods in GBD 2017 to analyse health patterns in the 34 province-level administrative units in China from 1990 to 2017. We estimated all-cause and cause-specific mortality, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), summary exposure values (SEVs), and attributable risk. We compared the observed results with expected values estimated based on the Socio-demographic Index (SDI). Findings Stroke and ischaemic heart disease were the leading causes of death and DALYs at the national level in China in 2017. Age-standardised DALYs per 100 000 population decreased by 33·1% (95% uncertainty interval [UI] 29·8 to 37·4) for stroke and increased by 4·6% (–3·3 to 10·7) for ischaemic heart disease from 1990 to 2017. Age-standardised stroke, ischaemic heart disease, lung cancer, chronic obstructive pulmonary disease, and liver cancer were the five leading causes of YLLs in 2017. Musculoskeletal disorders, mental health disorders, and sense organ diseases were the three leading causes of YLDs in 2017, and high systolic blood pressure, smoking, high-sodium diet, and ambient particulate matter pollution were among the leading four risk factors contributing to deaths and DALYs. All provinces had higher than expected DALYs per 100 000 population for liver cancer, with the observed to expected ratio ranging from 2·04 to 6·88. The all-cause age-standardised DALYs per 100 000 population were lower than expected in all provinces in 2017, and among the top 20 level 3 causes were lower than expected for ischaemic heart disease, Alzheimer's disease, headache disorder, and low back pain. The largest percentage change at the national level in age-standardised SEVs among the top ten leading risk factors was in high body-mass index (185%, 95% UI 113·1 to 247·7]), followed by ambient particulate matter pollution (88·5%, 66·4 to 116·4). Interpretation China has made substantial progress in reducing the burden of many diseases and disabilities. Strategies targeting chronic diseases, particularly in the elderly, should be prioritised in the expanding Chinese health-care system. Funding China National Key Research and Development Program and Bill & Melinda Gates Foundation.
Summary Background How long one lives, how many years of life are spent in good and poor health, and how the population’s state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1–7·8), from 65·6 years (65·3–65·8) in 1990 to 73·0 years (72·7–73·3) in 2017. The increase in years of life varied from 5·1 years (5·0–5·3) in high SDI countries to 12·0 years (11·3–12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1–33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8–15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9–6·7), from 57·0 years (54·6–59·1) in 1990 to 63·3 years (60·5–65·7) in 2017. The increase varied from 3·8 years (3·4–4·1) in high SDI countries to 10·5 years (9·8–11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4–1·7) in Saint Vincent and the Grenadines (62·4 years [59·9–64·7] in 1990 to 63·5 years [60·9–65·8] in 2017) to 23·7 years (21·9–25·6) in Eritrea (30·7 years [28·9–32·2] in 1990 to 54·4 years [51·5–57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6–2·3) in Algeria to 11·9 years (10·9–12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4–78·7]) and males (72·6 years [69·8–75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7–50·2] for females and 42·8 years [40·1–45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8–43·5) for communicable diseases and by 49·8% (47·9–51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8–43·0), although age-standardised DALY rates decreased by 18·1% (16·0–20·2). Interpretation With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low SDI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health. Funding Bill & Melinda Gates Foundation.
Electronic health tools provide little value if the intended users lack the skills to effectively engage them. With nearly half the adult population in the United States and Canada having literacy levels below what is needed to fully engage in an information-rich society, the implications for using information technology to promote health and aid in health care, or for eHealth, are considerable. Engaging with eHealth requires a skill set, or literacy, of its own. The concept of eHealth literacy is introduced and defined as the ability to seek, find, understand, and appraise health information from electronic sources and apply the knowledge gained to addressing or solving a health problem. In this paper, a model of eHealth literacy is introduced, comprised of multiple literacy types, including an outline of a set of fundamental skills consumers require to derive direct benefits from eHealth. A profile of each literacy type with examples of the problems patient-clients might present is provided along with a resource list to aid health practitioners in supporting literacy improvement with their patient-clients across each domain. Facets of the model are illustrated through a set of clinical cases to demonstrate how health practitioners can address eHealth literacy issues in clinical or public health practice. Potential future applications of the model are discussed.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (
http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a
credit line to the data.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.