41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breakpoint Features of Genomic Rearrangements in Neuroblastoma with Unbalanced Translocations and Chromothripsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent advances in neuroblastoma.

          John Maris (2010)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes.

            Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations.

              Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                26 August 2013
                : 8
                : 8
                : e72182
                Affiliations
                [1 ]Inserm, U900, Paris, France
                [2 ]Institut Curie, Centre de Recherche, Paris, France
                [3 ]Mines ParisTech, Fontainebleau, France
                [4 ]Inserm, U830, Institut Curie, Paris, France
                [5 ]Centre Léon Bérard, Laboratoire de Recherche Translationnelle, Lyon, France
                [6 ]Institut Curie, Département de Pédiatrie, Paris, France
                [7 ]Institut Curie, Unité de Génétique Somatique, Paris, France
                [8 ]NGS Platform, Institut Curie, Paris, France
                [9 ]Institut Gustave Roussy, Villejuif, France
                Duke-National University of Singapore Graduate Medical School, Singapore
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IJ-L OD. Performed the experiments: SJ CP-E AC CL-B VR TRF. Analyzed the data: VB RD AL IJ-L. Contributed reagents/materials/analysis tools: VC GS SF GP GV EB OD. Wrote the paper: IJ-L VB.

                Article
                PONE-D-13-17097
                10.1371/journal.pone.0072182
                3753337
                23991058
                a5aee7f8-24a2-4ff7-9257-d60a40cd82f6
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 April 2013
                : 6 July 2013
                Page count
                Pages: 12
                Funding
                The U830 Inserm laboratory is supported by grants from the Institut National du Cancer, the Ligue Nationale contre le Cancer (Equipe labellisée), the Institut National du Cancer, the ICGEX program, the Association Hubert Gouin, Les Bagouz à Manon, les amis de Claire and Enfants et Santé. GS is supported by the Annenberg Foundation. The U900 Inserm laboratory is supported by the Ligue Nationale Contre le Cancer (Equipe labellisée). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article