15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower.

      TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
      Chromosome Mapping, Crosses, Genetic, Helianthus, genetics, Inbreeding, Quantitative Trait Loci, Seeds, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wild populations of common sunflower (Helianthus annuus L.) are self-incompatible and have deep seed dormancy, whereas modern cultivars, inbreds, and hybrids are self-compatible and partially-to-strongly self-pollinated, and have shallow seed dormancy. Self-pollination (SP) and seed dormancy are genetically complex traits, the number of self-compatibility (S) loci has been disputed, and none of the putative S loci have been genetically mapped in sunflower. We genetically mapped quantitative trait loci (QTL) for self-incompatibility (SI), SP, and seed dormancy in a backcross population produced from a cross between an elite, self-pollinated, nondormant inbred line (NMS373) and a wild, self-incompatible, dormant population (ANN1811). A population consisting of 212 BC(1) progeny was subsequently produced by backcrossing a single hybrid individual to NMS373. BC(1) progeny produced 0-838 seeds per primary capitula when naturally selfed and 0-518 seeds per secondary capitula when manually selfed and segregated for a single S locus. The S locus mapped to linkage group 17 and was tightly linked to a cluster of previously identified QTL for several domestication and postdomestication traits. Two synergistically interacting QTL were identified for SP among self-compatible (ss) BC(1) progeny (R(2)=34.6%). NMS373 homozygotes produced 271.5 more seeds per secondary capitulum than heterozygotes. Germination percentages of seeds after-ripened for 4 weeks ranged from 0% to 100% among self-compatible BC(1)S(1) families. Three QTL for seed dormancy were identified (R(2)=38.3%). QTL effects were in the predicted direction (wild alleles decreased self-pollination and seed germination). The present analysis differentiated between loci governing SI and SP and identified DNA markers for bypassing SI and seed dormancy in elite x wild crosses through marker-assisted selection.

          Related collections

          Author and article information

          Journal
          16034584
          10.1007/s00122-005-1934-7

          Chemistry
          Chromosome Mapping,Crosses, Genetic,Helianthus,genetics,Inbreeding,Quantitative Trait Loci,Seeds,physiology

          Comments

          Comment on this article