7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Circulating protein synthesis rates reveal skeletal muscle proteome dynamics.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise.

          We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied over 72 h after 1 h of one-legged kicking exercise at 67% of maximum workload (W(max)). To label tissue proteins in muscle and tendon primed, constant infusions of [1-(13)C]leucine or [1-(13)C]valine and flooding doses of [(15)N] or [(13)C]proline were given intravenously, with estimation of labelling in target proteins by gas chromatography-mass spectrometry. Patellar tendon and quadriceps biopsies were taken in exercised and rested legs at 6, 24, 42 or 48 and 72 h after exercise. The fractional synthetic rates of all proteins were elevated at 6 h and rose rapidly to peak at 24 h post exercise (tendon collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise in human tendon and muscle. The similar time course of changes of protein synthetic rates in different cell types supports the idea of coordinated musculotendinous adaptation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project.

            To determine the association between loss of muscle strength, mass, and quality and functional limitation and physical disability in older men. Cross-sectional study of older men participating in the Concord Health and Ageing in Men Project (CHAMP). Elderly men living in a defined geographical region in Sydney, Australia. One thousand seven hundred five community-dwelling men aged 70 and older who participated in the baseline assessments of CHAMP. Upper and lower extremity strength were measured using dynamometers for grip and quadriceps strength. Appendicular skeletal lean mass was assessed using dual X-ray absorptiometry. Muscle quality was defined as the ratio of strength to mass in upper and lower extremities. For each parameter, subjects in the lowest 20% of the distribution were defined as below normal. Functional limitation was assessed according to self-report and objective lower extremity performance measures. Physical disability was measured according to self-report questionnaire. After adjusting for important confounders, the prevalence ratio (PR) for poor quadriceps strength and self-reported functional limitation was 1.91 (95% confidence interval (CI) = 1.10-2.40); for performance-based functional limitation the PR was 1.81 (95% CI = 1.45-2.24). The adjusted PR for poor grip strength and physical disability in instrumental activities of daily living (IADLs) was 1.37 (95% CI = 1.20-1.56). The adjusted PR for low skeletal lean mass (adjusted for fat mass) and physical disability in basic activities of daily living was 2.08 (95% CI = 1.37-3.15). For muscle quality, the PR for lower extremity specific force and functional limitation and physical disability was stronger than upper extremity specific force. Muscle strength is the single best measure of age-related muscle change and is associated with physical disability in IADLs and functional limitation. © 2010, Copyright the Authors. Journal compilation © 2010, The American Geriatrics Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

              Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.
                Bookmark

                Author and article information

                Journal
                J. Clin. Invest.
                The Journal of clinical investigation
                American Society for Clinical Investigation
                1558-8238
                0021-9738
                Jan 2016
                : 126
                : 1
                Article
                79639
                10.1172/JCI79639
                4701543
                26657858
                a566a661-122b-40e4-8a9f-c4633d1b07d3
                History

                Comments

                Comment on this article