27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-hoc selection of dynamic causal models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          ► New (post-hoc) procedure for approximating the model evidence is applied to deterministic bilinear dynamic causal models for fMRI. ► Post-hoc procedure is based on optimising only the largest model of a set of models. ► Good agreement found between free energy bound and post-hoc approximations to the model evidence and model parameters. ► Post-hoc approach reduces computational time immensely and can be applied to any nested models.

          Abstract

          Dynamic causal modelling (DCM) was originally proposed as a hypothesis driven procedure in which a small number of neurobiologically motivated models are compared. Model comparison in this context usually proceeds by individually fitting each model to data and then approximating the corresponding model evidence with a free energy bound. However, a recent trend has emerged for comparing very large numbers of models in a more exploratory manner. This led Friston and Penny (2011) to propose a post-hoc approximation to the model evidence, which is computed by optimising only the largest (full) model of a set of models. The evidence for any (reduced) submodel is then obtained using a generalisation of the Savage-Dickey density ratio ( Dickey, 1971). The benefit of this post-hoc approach is a huge reduction in the computational time required for model fitting. This is because only a single model is fitted to data, allowing a potentially huge model space to be searched relatively quickly. In this paper, we explore the relationship between the free energy bound and post-hoc approximations to the model evidence in the context of deterministic (bilinear) dynamic causal models (DCMs) for functional magnetic resonance imaging data.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic causal modelling.

          In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method.

            In the field of cognitive psychology, the p-value hypothesis test has established a stranglehold on statistical reporting. This is unfortunate, as the p-value provides at best a rough estimate of the evidence that the data provide for the presence of an experimental effect. An alternative and arguably more appropriate measure of evidence is conveyed by a Bayesian hypothesis test, which prefers the model with the highest average likelihood. One of the main problems with this Bayesian hypothesis test, however, is that it often requires relatively sophisticated numerical methods for its computation. Here we draw attention to the Savage-Dickey density ratio method, a method that can be used to compute the result of a Bayesian hypothesis test for nested models and under certain plausible restrictions on the parameter priors. Practical examples demonstrate the method's validity, generality, and flexibility. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonlinear dynamic causal models for fMRI.

              Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1-->V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both practical examples, Bayesian model selection favoured the nonlinear models over corresponding bilinear ones.
                Bookmark

                Author and article information

                Journal
                J Neurosci Methods
                J. Neurosci. Methods
                Journal of Neuroscience Methods
                Elsevier/North-Holland Biomedical Press
                0165-0270
                1872-678X
                30 June 2012
                30 June 2012
                : 208-540
                : 1-7
                : 66-78
                Affiliations
                Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG, UK
                Author notes
                [* ]Corresponding author at: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG London, UK. Tel.: +44 020 3448 4362; fax: +44 020 7813 1420. m.rosa@ 123456ucl.ac.uk
                Article
                NSM6326
                10.1016/j.jneumeth.2012.04.013
                3401996
                22561579
                a4e37d25-36ef-4d72-8e42-6315d3aedb0f
                © 2012 Elsevier B.V.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 22 December 2011
                : 16 April 2012
                : 18 April 2012
                Categories
                Computational Neuroscience

                Neurosciences
                free energy bound,bayesian model selection,dynamic causal modelling,model evidence,fmri,connectivity

                Comments

                Comment on this article