14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Filtering the surface EMG signal: Movement artifact and baseline noise contamination.

          The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A direct comparison of wet, dry and insulating bioelectric recording electrodes.

            Alternatives to conventional wet electrode types are keenly sought for biomedical use and physiological research, especially when prolonged recording of biosignals is demanded. This paper describes a quantitative comparison of three types of bioelectrode (wet, dry and insulating) based on tests involving electrode impedance, static interference and motion artefact induced by various means. Data were collected simultaneously, and in the same physical environment for all electrode types. Results indicate that in many situations the performance of dry and insulating electrodes compares favourably with wet electrodes. The influence of non-stationary electric fields on shielded dry and insulating electrode types was compared to wet types. It was observed that interference experienced by dry and insulating electrode types was 40 dB and 34 dB less than that experienced by wet electrode types. Similarly, the effect of motion artefact on dry and insulating electrodes was compared to wet types. Artefact levels for dry and insulating electrodes were significantly higher than those for wet types at the beginning of trials conducted. By the end of the trial periods artefact levels for dry and insulating types were lower than wet electrodes by an average of 8.2 dB and 6.8 dB respectively. The reservations expressed in other studies regarding the viability of dry and insulating electrodes for reliable sensing of biosignals are not supported by the work described here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

              Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 April 2017
                2017
                : 7
                : 46697
                Affiliations
                [1 ]Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA 23284, USA
                [2 ]School of Engineering and Digital Arts, University of Kent , Canterbury, United Kingdom
                [3 ]Department of Industrial Engineering, University of Pittsburgh , Pittsburgh, PA 15261, USA
                [4 ]Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA 15261, USA
                [5 ]Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University , Richmond, VA 23298, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep46697
                10.1038/srep46697
                5399368
                28429757
                a4b64b04-4b32-43f1-b09c-e5066dd4bc93
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 November 2016
                : 28 March 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article