8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Colorectal cancer incidence and mortality: the current status, temporal trends and their attributable risk factors in 60 countries in 2000–2019

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Globally, colorectal cancer (CRC) imposes a substantial burden on healthcare systems and confers considerable medical expenditures. We aimed to evaluate the global and regional burden in epidemiological trends and factors associated with the incidence and mortality of CRC.

          Methods:

          We used data from the GLOBOCAN database to estimate CRC incidence and mortality worldwide in 2020 and their association with the human development index (HDI). Trends of age-standardized rates of incidence and mortality in 60 countries (2000–2019) were evaluated by Joinpoint regression analysis using data of Global Burden of Disease 2019. The association between exposure to country-level lifestyle, metabolic and socioeconomic factors obtained from the World Health Organization Global Health Observatory and World Bank DataBank data and CRC incidence and mortality was determined by multivariable linear regression.

          Results:

          CRC incidence and mortality varied greatly in the 60 selected countries, and much higher incidence and mortality were observed in countries with higher HDIs, and vice versa. From 2000 to 2019, significant increases of incidence and mortality were observed for 33 countries (average annual percent changes [AAPCs], 0.24–3.82) and 18 countries (AAPCs, 0.41–2.22), respectively. A stronger increase in incidence was observed among males (AAPCs, 0.36–4.54) and individuals <50 years (AAPCs, 0.56–3.86). Notably, 15 countries showed significant decreases in both incidence (AAPCs, −0.24 to −2.19) and mortality (AAPCs, −0.84 to −2.74). A significant increase of incidence among individuals <50 years was observed in 30 countries (AAPCs, 0.28–3.62). Countries with higher incidence were more likely to have a higher prevalence of alcohol drinking, higher level of cholesterol level, higher level of unemployment, and a poorer healthcare system.

          Conclusions:

          Some high-HDI countries showed decreasing trends in CRC incidence and mortality, whereas developing countries that previously had low disease burden showed significantly increased incidence and mortality trends, especially in males and populations ≥50 years, which require targeted preventive health programs.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

            Summary Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colorectal cancer statistics, 2020

              Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC occurrence based on incidence data (available through 2016) from population-based cancer registries and mortality data (through 2017) from the National Center for Health Statistics. In 2020, approximately 147,950 individuals will be diagnosed with CRC and 53,200 will die from the disease, including 17,930 cases and 3,640 deaths in individuals aged younger than 50 years. The incidence rate during 2012 through 2016 ranged from 30 (per 100,000 persons) in Asian/Pacific Islanders to 45.7 in blacks and 89 in Alaska Natives. Rapid declines in incidence among screening-aged individuals during the 2000s continued during 2011 through 2016 in those aged 65 years and older (by 3.3% annually) but reversed in those aged 50 to 64 years, among whom rates increased by 1% annually. Among individuals aged younger than 50 years, the incidence rate increased by approximately 2% annually for tumors in the proximal and distal colon, as well as the rectum, driven by trends in non-Hispanic whites. CRC death rates during 2008 through 2017 declined by 3% annually in individuals aged 65 years and older and by 0.6% annually in individuals aged 50 to 64 years while increasing by 1.3% annually in those aged younger than 50 years. Mortality declines among individuals aged 50 years and older were steepest among blacks, who also had the only decreasing trend among those aged younger than 50 years, and excluded American Indians/Alaska Natives, among whom rates remained stable. Progress against CRC can be accelerated by increasing access to guideline-recommended screening and high-quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle-aged adults.
                Bookmark

                Author and article information

                Journal
                Chin Med J (Engl)
                Chin Med J (Engl)
                CM9
                Chinese Medical Journal
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0366-6999
                2542-5641
                20 August 2021
                7 July 2021
                : 134
                : 16
                : 1941-1951
                Affiliations
                [1 ]Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
                [2 ]Department of Cancer Prevention, Hunan Cancer Hospital, Changsha, Hunan 410006, China
                [3 ]Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
                Author notes
                Correspondence to: Prof. Min Dai, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China E-Mail: daimin2002@ 123456hotmail.com Dr. Hong-Da Chen, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China E-Mail: hongda.chen@ 123456cicams.ac.cn
                Article
                CMJ-2021-1123 00008
                10.1097/CM9.0000000000001619
                8382382
                34238851
                a3efda21-8e2a-4ff2-a80d-7c51de287856
                Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivitives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially. http://creativecommons.org/licenses/by-nc-nd/3.0

                History
                : 18 April 2021
                Categories
                Original Articles
                Custom metadata
                TRUE

                colorectal cancer burden,trend,incidence,mortality,risk factor,globocan,global burden of disease

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content111

                Cited by27

                Most referenced authors5,213