42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin–Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to βPIX. Rather, Scrib depletion disrupts E-cadherin–mediated cell–cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin–α-catenin fusion protein but not by E-cadherin–green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal transitions in development and pathologies.

            The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of cadherin-mediated adhesion in morphogenesis.

              Cadherin cell-adhesion proteins mediate many facets of tissue morphogenesis. The dynamic regulation of cadherins in response to various extracellular signals controls cell sorting, cell rearrangements and cell movements. Cadherins are regulated at the cell surface by an inside-out signalling mechanism that is analogous to the integrins in platelets and leukocytes. Signal-transduction pathways impinge on the catenins (cytoplasmic cadherin-associated proteins), which transduce changes across the membrane to alter the state of the cadherin adhesive bond.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                19 December 2005
                : 171
                : 6
                : 1061-1071
                Affiliations
                [1 ]Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908
                [2 ]Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908
                [3 ]Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
                Author notes

                Correspondence to Ian G. Macara: igm9c@ 123456virginia.edu

                Article
                200506094
                10.1083/jcb.200506094
                2171311
                16344308
                a3b71957-e21d-4b50-aaf4-3decccec23a0
                Copyright © 2005, The Rockefeller University Press
                History
                : 16 June 2005
                : 8 November 2005
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article