0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Reference Center Choice on Adaptive Optics Imaging Cone Mosaic Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Foveal center marking is a key step in retinal image analysis. We investigated the discordance between the adaptive optics (AO) montage center (AMC) and the foveal pit center (FPC) and its implications for cone mosaic analysis using a commercial flood-illumination AO camera.

          Methods

          Thirty eyes of 30 individuals (including 15 healthy and 15 patients with rod–cone dystrophy) were included. Spectral-domain optical coherence tomography was used to determine the FPC, and flood-illumination AO imaging was performed with overlapping image frames to create an AO montage. The AMC was determined by averaging the (0,0) coordinates in the four paracentral overlapping AO image frames. Cone mosaic measurements at various retinal eccentricities were compared between corresponding retinal loci relative to the AMC or FPC.

          Results

          AMCs were located temporally to the FPCs in 14 of 15 eyes in both groups. The average AMC–FPC discordance was 0.85° among healthy controls and 0.33° among patients with rod-cone dystrophy ( P < 0.05). The distance of the AMC from the FPC was a significant determinant of the cone density (β estimate = 218 cells/deg 2/deg; 95% confidence interval [CI], 107–330; P < 0.001) and inter-cone distance (β estimate = 0.28 arcmin/deg; 95% CI, 0.15–0.40; P < 0.001), after adjustment for age, sex, axial length, spherical equivalent, eccentricity, and disease status.

          Conclusions

          There is a marked mismatch between the AMC and FPC in healthy eyes that may be modified by disease process such as rod–cone dystrophy. We recommend users of AO imaging systems carefully align the AO montage with a foveal anatomical landmark, such as the FPC, to ensure precise and reproducible localization of the eccentricities and regions of interest for cone mosaic analysis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          High-resolution imaging with adaptive optics in patients with inherited retinal degeneration.

          To investigate macular photoreceptor structure in patients with inherited retinal degeneration using high-resolution images and to correlate the findings with clinical phenotypes and genetic mutations. Adaptive optics scanning laser ophthalmoscopy (AOSLO) images of photoreceptors were obtained in 16 eyes: five with retinitis pigmentosa (RP), three with cone-rod dystrophy (CRD), and eight without retinal disease. A quadratic model was used to illustrate cone spacing as a function of retinal eccentricity. Cone spacing at 1 degrees eccentricity was compared with standard measures of central visual function, including best-corrected visual acuity (BCVA), foveal threshold, and multifocal electroretinogram (mfERG) amplitude and timing. Intervisit variations were studied in one patient with RP and one patient with CRD. Screening of candidate disease genes identified mutations in two patients, one with RP (a rhodopsin mutation) and the other with CRD (a novel RPGR-ORF15 mutation). Cone spacing values were significantly different from normal for patients with RP (P = 0.01) and CRD (P < 0.0001) and demonstrated a statistically significant correlation with foveal threshold (P = 0.0003), BCVA (P = 0.01), and mfERG amplitude (P = 0.008). Although many RP patients showed normal cone spacing within 1 degrees of fixation, cones could not be unambiguously identified in several retinal regions. Cone spacing increased in all CRD patients, even those with early disease. Little variation was observed in cone spacing measured during two sessions fewer than 8 days apart. AOSLO images can be used to study macular cones with high resolution in patients with retinal degeneration. The authors present the first report of cone structure in vivo in patients with mutations in rhodopsin and RPGR-ORF15 and show that macular cones display distinct characteristics, depending on the underlying disease. AOSLO imaging, therefore, can provide new insight into possible mechanisms of cone vision loss in patients with retinal degeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What is the best fixation target? The effect of target shape on stability of fixational eye movements.

            People can direct their gaze at a visual target for extended periods of time. Yet, even during fixation the eyes make small, involuntary movements (e.g. tremor, drift, and microsaccades). This can be a problem during experiments that require stable fixation. The shape of a fixation target can be easily manipulated in the context of many experimental paradigms. Thus, from a purely methodological point of view, it would be good to know if there was a particular shape of a fixation target that minimizes involuntary eye movements during fixation, because this shape could then be used in experiments that require stable fixation. Based on this methodological motivation, the current experiments tested if the shape of a fixation target can be used to reduce eye movements during fixation. In two separate experiments subjects directed their gaze at a fixation target for 17s on each trial. The shape of the fixation target varied from trial to trial and was drawn from a set of seven shapes, the use of which has been frequently reported in the literature. To determine stability of fixation we computed spatial dispersion and microsaccade rate. We found that only a target shape which looks like a combination of bulls eye and cross hair resulted in combined low dispersion and microsaccade rate. We recommend the combination of bulls eye and cross hair as fixation target shape for experiments that require stable fixation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intersubject variability of foveal cone photoreceptor density in relation to eye length.

              Adaptive optics scanning laser ophthalmoscopy (AOSLO) under optimized wavefront correction allows for routine imaging of foveal cone photoreceptors. The intersubject variability of foveal cone density was measured and its relation to eye length evaluated. AOSLO was used to image 18 healthy eyes with axial lengths from 22.86 to 28.31 mm. Ocular biometry and an eye model were used to estimate the retinal magnification factor. Individual cones in the AOSLO images were labeled, and the locations were used to generate topographic maps representing the spatial distribution of density. Representative retinal (cones/mm(2)) and angular (cones/deg(2)) cone densities at specific eccentricities were calculated from these maps. The entire foveal cone mosaic was resolved in four eyes, whereas the cones within 0.03 mm eccentricity remained unresolved in most eyes. The preferred retinal locus deviated significantly (P < 0.001) from the point of peak cone density for all except one individual. A significant decrease in retinal density (P < 0.05) with increasing axial length was observed at 0.30 mm eccentricity but not closer. Longer, more myopic eyes generally had higher angular density near the foveal center than the shorter eyes, but by 1°, this difference was nullified by retinal expansion, and so angular densities across all eyes were similar. The AOSLO can resolve the smallest foveal cones in certain eyes. Although myopia causes retinal stretching in the fovea, its effect within the foveola is confounded by factors other than cone density that have high levels of intersubject variability.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                21 April 2022
                April 2022
                : 63
                : 4
                : 12
                Affiliations
                [1 ]Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
                [2 ]Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
                [3 ]Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, United Kingdom
                [4 ]Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
                [5 ]Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
                Author notes
                [* ]Correspondence: Fred K. Chen, Lions Eye Institute, 2 Verdun Street, Nedlands WA 6009, Australia; fredchen@ 123456lei.org.au .
                Article
                IOVS-21-33725
                10.1167/iovs.63.4.12
                9034713
                35446344
                a35e5f13-51fb-43f4-81d1-b26a0907543d
                Copyright 2022 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 30 March 2022
                : 10 October 2021
                Page count
                Pages: 9
                Categories
                Retina
                Retina

                adaptive optics imaging,fovea,foveal pit center,cone mosaic,rod–cone dystrophy

                Comments

                Comment on this article