0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of psyllium husk powder on the emulsifying stability, rheological properties, microstructure, and oxidative stability of oil-in-water emulsions

      , , , , ,
      Food Control
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity.

          Nanoemulsions fabricated from food-grade ingredients are being increasingly utilized in the food industry to encapsulate, protect, and deliver lipophilic functional components, such as biologically-active lipids (e.g., ω-3 fatty acids, conjugated linoleic acid) and oil-soluble flavors, vitamins, preservatives, and nutraceuticals. The small size of the particles in nanoemulsions (r<100 nm) means that they have a number of potential advantages over conventional emulsions-higher stability to droplet aggregation and gravitational separation, high optical clarity, ability to modulate product texture, and, increased bioavailability of lipophilic components. On the other hand, there may also be some risks associated with the oral ingestion of nanoemulsions, such as their ability to change the biological fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication. This review article provides an overview of the current status of nanoemulsion formulation, fabrication, properties, applications, biological fate, and potential toxicity with emphasis on systems suitable for utilization within the food and beverage industry. © Taylor and Francis Group, LLC
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrocolloids at interfaces and the influence on the properties of dispersed systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk).

              The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Control
                Food Control
                Elsevier BV
                09567135
                April 2022
                April 2022
                : 134
                : 108716
                Article
                10.1016/j.foodcont.2021.108716
                a359a32c-a9d2-4b38-95e7-f9636e772b54
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article