11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent developments of nanocatalyzed liquid-phase hydrogen generation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanocomposite catalysts have dramatically improved hydrogen generation from several hydrogen-rich sources in the liquid phase toward the transport of this green fuel.

          Abstract

          Hydrogen is the most effective and sustainable carrier of clean energy, and liquid-phase hydrogen storage materials with high hydrogen content, reversibility and good dehydrogenation kinetics are promising in view of “hydrogen economy”. Efficient, low-cost, safe and selective hydrogen generation from chemical storage materials remains challenging, however. In this Review article, an overview of the recent achievements is provided, addressing the topic of nanocatalysis of hydrogen production from liquid-phase hydrogen storage materials including metal-boron hydrides, borane–nitrogen compounds, and liquid organic hydrides. The state-of-the-art catalysts range from high-performance nanocatalysts based on noble and non-noble metal nanoparticles (NPs) to emerging single-atom catalysts. Key aspects that are discussed include insights into the dehydrogenation mechanisms, regenerations from the spent liquid chemical hydrides, and tandem reactions using the in situ generated hydrogen. Finally, challenges, perspectives, and research directions for this area are envisaged.

          Related collections

          Most cited references566

          • Record: found
          • Abstract: not found
          • Article: not found

          Heterogeneous single-atom catalysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-atom catalysts: a new frontier in heterogeneous catalysis.

            Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequently leads to undesired side reactions. It also makes it extremely difficult, if not impossible, to uniquely identify and control the active sites of interest. The ultimate small-size limit for metal particles is the single-atom catalyst (SAC), which contains isolated metal atoms singly dispersed on supports. SACs maximize the efficiency of metal atom use, which is particularly important for supported noble metal catalysts. Moreover, with well-defined and uniform single-atom dispersion, SACs offer great potential for achieving high activity and selectivity. In this Account, we highlight recent advances in preparation, characterization, and catalytic performance of SACs, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene. We discuss experimental and theoretical studies for a variety of reactions, including oxidation, water gas shift, and hydrogenation. We describe advances in understanding the spatial arrangements and electronic properties of single atoms, as well as their interactions with the support. Single metal atoms on support surfaces provide a unique opportunity to tune active sites and optimize the activity, selectivity, and stability of heterogeneous catalysts, offering the potential for applications in a variety of industrial chemical reactions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hydrogen energy, economy and storage: Review and recommendation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                March 15 2021
                2021
                : 50
                : 5
                : 3437-3484
                Affiliations
                [1 ]Univ. Bordeaux
                [2 ]ISM
                [3 ]UMR CNRS 5255
                [4 ]33405 Talence Cedex
                [5 ]France
                Article
                10.1039/D0CS00515K
                33492311
                a2bcd6c0-fc02-43ad-b4ca-c0368385f747
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article