12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-throughput detection of clinically targetable alterations using next-generation sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-generation sequencing (NGS) has revolutionized the therapeutic care of patients by allowing high-throughput and parallel sequencing of large numbers of genes in a single run. However, most of available commercialized cancer panels target a large number of mutations that do not have direct therapeutic implications and that are not fully adapted to low quality formalin-fixed, paraffin-embedded (FFPE) samples. Here, we designed an amplicon-based NGS panel assay of 16 currently actionable genes according to the most recent recommendations of the French National Cancer Institute (NCI). We developed a panel of short amplicons (<150 bp) using dual-strand library preparation. The clinical validation of this panel was performed on well-characterized controls and 140 routine diagnostic samples, including highly degraded and cross-linked genomic DNA extracted from FFPE tumor samples. All mutations were detected with elevated inter-laboratory and inter-run reproducibility. Importantly, we could detect clinically actionable alterations in FFPE samples with variant allele frequencies as low as 1%. In addition, the overall molecular diagnosis rate was increased from 40.7% with conventional techniques to 59.2% with our NGS panel, including 41 novel actionable alterations normally not explored by conventional techniques. Taken together, we believe that this new actionable target panel represents a relevant, highly scalable and robust tool that is easy to implement and is fully adapted to daily clinical practice in hospital and academic laboratories.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comparison of Next-Generation Sequencing Systems

          With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing.

            Knowledge of "actionable" somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy-number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point mutations. To address this challenge, we utilized a targeted, massively parallel sequencing approach to detect tumor genomic alterations in formalin-fixed, paraffin-embedded (FFPE) tumor samples. Nearly 400-fold mean sequence coverage was achieved, and single-nucleotide sequence variants, small insertions/deletions, and chromosomal copynumber alterations were detected simultaneously with high accuracy compared with other methods in clinical use. Putatively actionable genomic alterations, including those that predict sensitivity or resistance to established and experimental therapies, were detected in each tumor sample tested. Thus, targeted deep sequencing of clinical tumor material may enable mutation-driven clinical trials and, ultimately, "personalized" cancer treatment. Despite the rapid proliferation of targeted therapeutic agents, systematic methods to profile clinically relevant tumor genomic alterations remain underdeveloped. We describe a sequencingbased approach to identifying genomic alterations in FFPE tumor samples. These studies affirm the feasibility and clinical utility of targeted sequencing in the oncology arena and provide a foundation for genomics-based stratification of cancer patients.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Precision oncology: an overview.

                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 June 2017
                3 March 2017
                : 8
                : 25
                : 40345-40358
                Affiliations
                1 CHU Montpellier, Arnaud de Villeneuve Hospital, Department of Pathology, Montpellier, France
                2 Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, CHU de Toulouse, Toulouse, France
                3 IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
                4 INSERM, Montpellier, France
                5 Laboratoire d’excellence Labex TOUCAN, Toulouse, France
                6 Université de Montpellier, Montpellier, France
                Author notes
                Correspondence to: Jérôme Solassol, j-solassol@ 123456chu-montpellier.fr
                [**]

                Equal senior contributors

                Article
                15875
                10.18632/oncotarget.15875
                5522202
                28404952
                a22a0746-4edc-4845-a091-62cccc402c9b
                Copyright: © 2017 Vendrell et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 July 2016
                : 23 January 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                ngs cancer panel,molecular diagnosis,targeted therapies,routine practice

                Comments

                Comment on this article