12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prostate, adrenocortical, and brown adipose tumors in fetal globin/T antigen transgenic mice.

      Laboratory investigation; a journal of technical methods and pathology
      Adrenal Cortex Neoplasms, genetics, pathology, Androgens, physiology, Animals, Antigens, Viral, Tumor, DNA, Neoplasm, metabolism, Female, Fetal Hemoglobin, Lipoma, Male, Mice, Mice, Transgenic, Promoter Regions, Genetic, Prostatic Neoplasms, RNA, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted oncogenesis in transgenic mice has unexpectedly produced predictable tissue-specific tumors. We previously showed that hybrid gene constructs of the human fetal G gamma- or mouse embryonic beta h1-globin promoter linked to the viral simian virus 40 T antigen (G gamma/T and beta h1/T) expressed appropriately in embryonic erythroid tissue, with some unexpected expression elsewhere. Tumors arising in the G gamma/T and beta h1/T transgenic mice were identified by histology, electron microscopy, cell culture, and RNase protection analyses. In one G gamma/T transgenic line, males developed prostate tumors that showed mixed neuroendocrine and epithelial cell features, whereas females developed adrenocortical tumors. In several other G gamma/T lines, brown adipose tumors, or hibernomas, developed in the subcutaneous interscapular neck and shoulder area, as well as internally in the periadrenal and pericardial areas. Little or no expression of T antigen was detected in adult animals before visible tumor formation. In contrast, beta h1/T transgenic mice developed only choroid plexus tumors. Transient transfection assays in prostate and adrenocortical tumor-derived cell lines showed that the G gamma-globin promoter is 7-to 10-fold more active than the beta h1-globin promoter. Activity of 5' G gamma-globin promoter-deletion DNA plasmids was analyzed by transient transfection in a variety of human prostate cancer cell lines. The G gamma-globin promoter region between -140 and -201 also showed high activity in the androgen-independent human prostate cancer cell lines DU-145 and PPC-1, but low activity in the androgen-responsive human prostate cell line LNCaP. We conclude that tumor formation in the G gamma/T transgenic lines apparently results from cryptic positive DNA cis elements active in prostate and adrenocortical cells. Because G gamma-globin promoter activity is highest in embryonic tissue, tumors in adult transgenic mice may result from expression of T antigen in embryonic prostate, adrenal glands, and brown adipose tissue.

          Related collections

          Author and article information

          Comments

          Comment on this article