24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of α-Globin H Helix in the Building of Tetrameric Human Hemoglobin: Interaction with α-Hemoglobin Stabilizing Protein (AHSP) and Heme Molecule

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSP WT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          An abundant erythroid protein that stabilizes free alpha-haemoglobin.

          The development of red blood cells (erythrocytes) is distinguished by high-level production of the oxygen carrier, haemoglobin A (HbA), a heterotetramer of alpha- and beta-haemoglobin subunits. HbA synthesis is coordinated to minimize the accumulation of free subunits that form cytotoxic precipitates. Molecular chaperones that regulate globin subunit stability, folding or assembly have been proposed to exist but have never been identified. Here we identify a protein stabilizing free alpha-haemoglobin by using a screen for genes induced by the essential erythroid transcription factor GATA-1 (refs 4, 5). Alpha Haemoglobin Stabilizing Protein (AHSP) is an abundant, erythroid-specific protein that forms a stable complex with free alpha-haemoglobin but not with beta-haemoglobin or haemoglobin A (alpha(2)beta(2)). Moreover, AHSP specifically protects free alpha-haemoglobin from precipitation in solution and in live cells. AHSP-gene-ablated mice exhibit reticulocytosis and abnormal erythrocyte morphology with intracellular inclusion bodies that stain positively for denatured haemoglobins. Hence, AHSP is required for normal erythropoiesis, probably acting to block the deleterious effects of free alpha-haemoglobin precipitation. Accordingly, AHSP gene dosage is predicted to modulate pathological states of alpha-haemoglobin excess, such as beta-thalassaemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia.

            Hemoglobin (Hb) A production during red blood cell development is coordinated to minimize the deleterious effects of free alpha- and beta-Hb subunits, which are unstable and cytotoxic. The alpha-Hb-stabilizing protein (AHSP) is an erythroid protein that specifically binds alpha-Hb and prevents its precipitation in vitro, which suggests that it may function to limit free alpha-Hb toxicities in vivo. We investigated this possibility through gene ablation and biochemical studies. AHSP(-/-) erythrocytes contained hemoglobin precipitates and were short-lived. In hematopoietic tissues, erythroid precursors were elevated in number but exhibited increased apoptosis. Consistent with unstable alpha-Hb, AHSP(-/-) erythrocytes contained increased ROS and evidence of oxidative damage. Moreover, purified recombinant AHSP inhibited ROS production by alpha-Hb in solution. Finally, loss of AHSP worsened the phenotype of beta-thalassemia, a common inherited anemia characterized by excess free alpha-Hb. Together, the data support a model in which AHSP binds alpha-Hb transiently to stabilize its conformation and render it biochemically inert prior to Hb A assembly. This function is essential for normal erythropoiesis and, to a greater extent, in beta-thalassemia. Our findings raise the possibility that altered AHSP expression levels could modulate the severity of beta-thalassemia in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanism of AHSP-mediated stabilization of alpha-hemoglobin.

              Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                4 November 2014
                : 9
                : 11
                : e111395
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale (Inserm) U779, Université Paris XI, Paris, France
                [2 ]INSERM U955, Université Paris Est Créteil (UPEC), Hôpital Henri Mondor, Paris, France
                Consejo Superior de Investigaciones Cientificas, Spain
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VBC. Performed the experiments: EDH CV JBF. Analyzed the data: EDH CV JBF MCM VBC. Contributed reagents/materials/analysis tools: EDH CV JBF MCM VBC. Wrote the paper: VBC HW. Edited and corrected manuscript: VBC HW CV MCM EDH JBF.

                [¤]

                Current address: CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France

                Article
                PONE-D-14-29569
                10.1371/journal.pone.0111395
                4219717
                25369055
                ee1a6335-c1ec-414b-8b95-fea5f9d45385
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 July 2014
                : 23 September 2014
                Page count
                Pages: 12
                Funding
                This work was supported by the Institut National de la Santé et de la Recherche Médicale and the University Paris XI. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Biophysics
                Genetics
                Molecular Biology
                Molecular Biology Techniques
                Physiology
                Engineering and Technology
                Industrial Engineering
                Industrial Processes
                Separation Processes
                Medicine and Health Sciences
                Clinical Genetics
                Hematology
                Research and Analysis Methods
                Chromatographic Techniques
                Database and Informatics Methods
                Electrophoretic Techniques
                Purification Techniques
                Spectrum Analysis Techniques
                Structural Characterization
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article