21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of mRNA Stability During Bacterial Stress Responses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5′ ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.

          Related collections

          Most cited references290

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          VIRMA mediates preferential m 6 A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation

          N 6-methyladenosine (m6A) is enriched in 3′untranslated region (3′UTR) and near stop codon of mature polyadenylated mRNAs in mammalian systems and has regulatory roles in eukaryotic mRNA transcriptome switch. Significantly, the mechanism for this modification preference remains unknown, however. Herein we report a characterization of the full m6A methyltransferase complex in HeLa cells identifying METTL3/METTL14/WTAP/VIRMA/HAKAI/ZC3H13 as the key components, and we show that VIRMA mediates preferential mRNA methylation in 3′UTR and near stop codon. Biochemical studies reveal that VIRMA recruits the catalytic core components METTL3/METTL14/WTAP to guide region-selective methylations. Around 60% of VIRMA mRNA immunoprecipitation targets manifest strong m6A enrichment in 3′UTR. Depletions of VIRMA and METTL3 induce 3′UTR lengthening of several hundred mRNAs with over 50% targets in common. VIRMA associates with polyadenylation cleavage factors CPSF5 and CPSF6 in an RNA-dependent manner. Depletion of CPSF5 leads to significant shortening of 3′UTR of over 2800 mRNAs, 84% of which are modified with m6A and have increased m6A peak density in 3′UTR and near stop codon after CPSF5 knockdown. Together, our studies provide insights into m6A deposition specificity in 3′UTR and its correlation with alternative polyadenylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

            Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs 1 , enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure 2–8 . mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center 9,10 . However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease 11–13 .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.

              The search for new TB drugs that rapidly and effectively sterilize the tissues and are thus able to shorten the duration of chemotherapy from the current 6 months has been hampered by a lack of understanding of the metabolism of the bacterium when in a 'persistent' or latent form. Little is known about the condition in which the bacilli survive, although laboratory models have shown that Mycobacterium tuberculosis can exist in a non-growing, drug-resistant state that may mimic persistence in vivo. Using nutrient starvation, we have established a model in which M. tuberculosis arrests growth, decreases its respiration rate and is resistant to isoniazid, rifampicin and metronidazole. We have used microarray and proteome analysis to investigate the response of M. tuberculosis to nutrient starvation. Proteome analysis of 6-week-starved cultures revealed the induction of several proteins. Microarray analysis enabled us to monitor gene expression during adaptation to nutrient starvation and confirmed the changes seen at the protein level. This has provided evidence for slowdown of the transcription apparatus, energy metabolism, lipid biosynthesis and cell division in addition to induction of the stringent response and several other genes that may play a role in maintaining long-term survival within the host. Thus, we have generated a model with which we can search for agents active against persistent M. tuberculosis and revealed a number of potential targets expressed under these conditions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 September 2020
                2020
                : 11
                : 2111
                Affiliations
                [1] 1Department of Biology and Biotechnology, Worcester Polytechnic Institute , Worcester, MA, United States
                [2] 2Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute , Worcester, MA, United States
                Author notes

                Edited by: Omar Orellana, University of Chile, Chile

                Reviewed by: Irina Artsimovitch, The Ohio State University, United States; Harald Putzer, UMR 8261 Expression Génétique Microbienne, France

                *Correspondence: Scarlet S. Shell, sshell@ 123456wpi.edu

                ORCID: Diego A. Vargas-Blanco, orcid.org/0000-0002-3559-2902; Scarlet S. Shell, orcid.org/0000-0003-1136-1728

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.02111
                7509114
                33013770
                a130f7b5-fa17-4852-b728-66e6c56d9a89
                Copyright © 2020 Vargas-Blanco and Shell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 May 2020
                : 11 August 2020
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 333, Pages: 25, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                ribonucleic acid,stress response,carbon starvation,nutrient starvation,hypoxia,mrna degradation,mrna stability,bacteria

                Comments

                Comment on this article