94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data

      research-article
      1 , 2 , 3 , , 1 , 2 , 3 , * , 1 , 2 , 3 , *
      Bioinformatics
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary: The CluePedia Cytoscape plugin is a search tool for new markers potentially associated to pathways. CluePedia calculates linear and non-linear statistical dependencies from experimental data. Genes, proteins and miRNAs can be connected based on in silico and/or experimental information and integrated into a ClueGO network of terms/pathways. Interrelations within each pathway can be investigated, and new potential associations may be revealed through gene/protein/miRNA enrichments. A pathway-like visualization can be created using the Cerebral plugin layout. Combining all these features is essential for data interpretation and the generation of new hypotheses. The CluePedia Cytoscape plugin is user-friendly and has an expressive and intuitive visualization.

          Availability: http://www.ici.upmc.fr/cluepedia/ and via the Cytoscape plugin manager. The user manual is available at the CluePedia website.

          Contact: bernhard.mlecnik@ 123456crc.jussieu.fr or jerome.galon@ 123456crc.jussieu.fr

          Supplementary information: Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRecords: an integrated resource for microRNA–target interactions

            MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The KEGG databases at GenomeNet.

              The Kyoto Encyclopedia of Genes and Genomes (KEGG) is the primary database resource of the Japanese GenomeNet service (http://www.genome.ad.jp/) for understanding higher order functional meanings and utilities of the cell or the organism from its genome information. KEGG consists of the PATHWAY database for the computerized knowledge on molecular interaction networks such as pathways and complexes, the GENES database for the information about genes and proteins generated by genome sequencing projects, and the LIGAND database for the information about chemical compounds and chemical reactions that are relevant to cellular processes. In addition to these three main databases, limited amounts of experimental data for microarray gene expression profiles and yeast two-hybrid systems are stored in the EXPRESSION and BRITE databases, respectively. Furthermore, a new database, named SSDB, is available for exploring the universe of all protein coding genes in the complete genomes and for identifying functional links and ortholog groups. The data objects in the KEGG databases are all represented as graphs and various computational methods are developed to detect graph features that can be related to biological functions. For example, the correlated clusters are graph similarities which can be used to predict a set of genes coding for a pathway or a complex, as summarized in the ortholog group tables, and the cliques in the SSDB graph are used to annotate genes. The KEGG databases are updated daily and made freely available (http://www.genome.ad.jp/kegg/).
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Bioinformatics
                bioinformatics
                bioinfo
                Bioinformatics
                Oxford University Press
                1367-4803
                1367-4811
                1 March 2013
                16 January 2013
                16 January 2013
                : 29
                : 5
                : 661-663
                Affiliations
                1INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, 2Cordeliers Research Center, Université Paris Descartes, 75006 Paris and 3Cordeliers Research Center, Université Pierre et Marie Curie Paris 6, Cordeliers Research Center, 75005 Paris, France
                Author notes
                *To whom correspondence should be addressed.

                Associate Editor: Jonathan Wren

                Article
                btt019
                10.1093/bioinformatics/btt019
                3582273
                23325622
                a10dfe50-1fa4-4ea9-9d92-469c6a6e4495
                © The Author 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2012
                : 8 January 2013
                : 9 January 2013
                Page count
                Pages: 3
                Categories
                Applications Notes
                Systems Biology

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article