9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tanshinone IIA inhibits ischemia-reperfusion-induced inflammation, ferroptosis and apoptosis through activation of the PI3K/Akt/mTOR pathway

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion (I/R) is a common clinical process, and the lung is one of the most sensitive organs of I/R injury, which often leads to acute lung injury (ALI). Tanshinone IIA (Tan IIA) has anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the effects of Tan IIA on lung I/R injury remain uncertain. Twenty-five C57BL/6 mice were randomly divided into five groups: control (Ctrl), I/R, I/R + Tan IIA, I/R + LY294002 and I/R + Tan IIA + LY294002 group. Tan IIA (30 μg/kg) was injected intraperitoneally 1 h before injury in the I/R + Tan IIA and I/R + Tan IIA + LY294002 groups. These data showed that Tan IIA significantly improved I/R-induced histological changes and scores of lung injury, decreased lung W/D ratio, MPO and MDA contents, reduced infiltration of inflammatory cells, and decreased the expression of IL-1β, IL-6 and TNF-α. Meanwhile, Tan IIA significantly increased the expression of Gpx4 and SLC7A11, and decreased the expression of Ptgs2 and MDA. Moreover, Tan IIA significantly reversed the low expression of Bcl2, and the high expression of Bax, Bim, Bad and cleave-caspase 3. Furthermore, Tan IIA caused a significant increase in the phosphorylation levels of PI3K, Akt and mTOR in the lungs. However, these beneficial effects of Tan IIA on I/R-induced lung inflammation, ferroptosis and apoptosis were offset by LY294002. Our data suggest that Tan IIA significantly ameliorates I/R-induced ALI, which is mediated through activation of PI3K/Akt/mTOR pathway.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy

          The phosphatidylinositol 3-kinase (PI3K)-Akt and the mammalian target of rapamycin (mTOR) represent two vital intracellular signaling pathways, which are associated with various aspects of cellular functions. These functions play vital roles in quiescence, survival, and growth in normal physiological circumstances as well as in various pathological disorders, including cancer. These two pathways are so intimately connected to each other that in some instances these are considered as one unique pathway crucial for cell cycle regulation. The purpose of this review is to emphasize the role of PI3K-Akt-mTOR signaling pathway in different cancer conditions and the importance of natural products targeting the PI3K-Akt-mTOR signaling pathway. This review also aims to draw the attention of scientists and researchers to the assorted beneficial effects of the numerous classes of natural products for the development of new and safe drugs for possible cancer therapy. We also summarize and critically analyze various preclinical and clinical studies on bioactive compounds and constituents, which are derived from natural products, to target the PI3K-Akt-mTOR signaling pathway for cancer prevention and intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation

            Abstract Gastric cancer represents a malignant type of cancer worldwide. Tanshinone IIA (Tan IIA), a pharmacologically active component isolated from the rhizome of the Chinese herb Salvia miltiorrhiza Bunge (Danshen), has been reported to possess an anti-cancer effect in gastric cancer. However, its mechanisms are still not fully understood. In the present study, we found that Tan IIA induced ferroptosis in BGC-823 and NCI-H87 gastric cancer cells. Tan IIA increased lipid peroxidation and up-regulated Ptgs2 and Chac1 expression, two markers of ferroptosis. Ferrostatin-1 (Fer-1), an inhibitor of lipid peroxidation, inhibited Tan IIA caused-lipid peroxidation and Ptgs2 and Chac1 expression. In addition, Tan IIA also up-regulated p53 expression and down-regulated xCT expression. Tan IIA caused decreased intracellular glutathione (GSH) level and cysteine level and increased intracellular reactive oxygen species (ROS) level. p53 knockdown attenuated Tan IIA-induced lipid peroxidation and ferroptosis. Tan IIA also induced lipid peroxidation and ferroptosis in BGC-823 xenograft model, and the anti-cancer effect of Tan IIA was attenuated by Fer-1 in vivo. Therefore, Tan IIA could suppress the proliferation of gastric cancer via inducing p53 upregulation-mediated ferroptosis. Our study have identified a novel mechanism of Tan IIA against gastric cancer, and might provide a critical insight into the application of Tan IIA in gastric cancer intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling

              Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. Methods SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Results Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Human & Experimental Toxicology
                Hum Exp Toxicol
                SAGE Publications
                0960-3271
                1477-0903
                December 2023
                June 14 2023
                December 2023
                : 42
                Affiliations
                [1 ]Department of Pulmonary and Critical Care Medicine, The People’s Hospital of Liaoning Province, Shenyang, China
                [2 ]Shenyang Medical College, Shenyang, China
                [3 ]Department of Emergency, The People’s Hospital of Liaoning Province, Shenyang, China
                Article
                10.1177/09603271231180864
                37314409
                a0eda3ed-1a58-47ba-83d8-c790f5887333
                © 2023

                https://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article