28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Deoxynivalenol Contamination and Oral Lipopolysaccharide Challenge Alters the Cecal Microbiota of Broiler Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary deoxynivalenol (DON) impairs the intestinal functions and performance in broiler chickens, whereas little is known about the effect of DON on the gastrointestinal microbiota. This study evaluated the impact of graded levels of dietary DON contamination on the cecal bacterial microbiota, their predicted metabolic abilities and short-chain fatty acid (SCFA) profiles in chickens. In using a single oral lipopolysaccharide (LPS) challenge we further assessed whether an additional intestinal stressor would potentiate DON-related effects on the cecal microbiota. Eighty 1-day-old chicks were fed diets with increasing DON concentrations (0, 2.5, 5, and 10 mg DON per kg diet) for 5 weeks and were sampled after half of the chickens received an oral LPS challenge (1 mg LPS/kg bodyweight) 1 day before sampling. The bacterial composition was investigated by Illumina MiSeq sequencing of the V3–5 region of the 16S rRNA gene. DON-feeding decreased ( p < 0.05) the cecal species richness (Chao1) and evenness (Shannon) compared to the non-contaminated diet. The phyla Firmicutes and Proteobacteria tended to linearly increase and decrease with increasing DON-concentrations, respectively. Within the Firmicutes, DON decreased the relative abundance of Oscillospira, Clostridiaceae genus, Clostridium, and Ruminococcaceae genus 2 ( p < 0.05), whereas it increased Clostridiales genus 2 ( p < 0.05). Moreover, increasing DON levels linearly decreased a high-abundance Enterobacteriaceae genus and an Escherichia/Shigella-OTU ( p < 0.05). Changes in the bacterial composition and their imputed metagenomic capabilities may be explained by DON-related changes in host physiology and cecal nutrient availability. The oral LPS challenge only decreased the abundance of an unassigned Clostridiales genus 2 ( p = 0.03). Increasing dietary concentrations of DON quadratically increased the cecal total SCFA and butyrate concentration ( p < 0.05), whereas a DON × LPS interaction indicated that LPS mainly increased cecal total SCFA, butyrate, and acetate concentrations in chickens fed the diets that were not contaminated with DON. The present findings showed that even the lowest level of dietary DON contamination had modulatory effects on chicken's cecal bacterial microbiota composition and diversity, whereas the additional oral challenge with LPS did not potentiate DON effects on the cecal bacterial composition.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analyses of human gut microbes associated with obesity and IBD.

            Recent studies have linked human gut microbes to obesity and inflammatory bowel disease, but consistent signals have been difficult to identify. Here we test for indicator taxa and general features of the microbiota that are generally consistent across studies of obesity and of IBD, focusing on studies involving high-throughput sequencing of the 16S rRNA gene (which we could process using a common computational pipeline). We find that IBD has a consistent signature across studies and allows high classification accuracy of IBD from non-IBD subjects, but that although subjects can be classified as lean or obese within each individual study with statistically significant accuracy, consistent with the ability of the microbiota to experimentally transfer this phenotype, signatures of obesity are not consistent between studies even when the data are analyzed with consistent methods. The results suggest that correlations between microbes and clinical conditions with different effect sizes (e.g. the large effect size of IBD versus the small effect size of obesity) may require different cohort selection and analysis strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles and regulation of the mucus barrier in the gut.

              The gastrointestinal tract is coated by a thick layer of mucus that forms the front line of innate host defense. Mucus consists of high molecular weight glycoproteins called mucins that are synthesized and secreted by goblet cells and functions primarily to lubricate the epithelium and protect it from damage by noxious substances. Recent studies have also suggested the involvement of goblet cells and mucins in complex immune functions such as antigen presentation and tolerance. Under normal physiological conditions, goblet cells continually produce mucins to replenish and maintain the mucus barrier; however, goblet cell function can be disrupted by various factors that can affect the integrity of the mucus barrier. Some of these factors such as microbes, microbial toxins and cytokines can stimulate or inhibit mucin production and secretion, alter the chemical composition of mucins or degrade the mucus layer. This can lead to a compromised mucus barrier and subsequently to various pathological conditions like chronic inflammatory diseases. Insight into how these factors modulate the mucus barrier in the gut is necessary in order to develop strategies to combat these disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 April 2018
                2018
                : 9
                : 804
                Affiliations
                Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna , Vienna, Austria
                Author notes

                Edited by: Emilio M. Ungerfeld, Instituto de Investigaciones Agropecuarias (INIA), Chile

                Reviewed by: Robert J. Moore, RMIT University, Australia; Kyung-Woo Lee, Konkuk University, South Korea

                *Correspondence: Barbara U. Metzler-Zebeli Barbara.Metzler@ 123456vetmeduni.ac.at

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00804
                5996912
                29922239
                a0e341da-d7c3-4d1b-92e6-6c3b459d89da
                Copyright © 2018 Lucke, Böhm, Zebeli and Metzler-Zebeli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 November 2017
                : 10 April 2018
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 66, Pages: 11, Words: 8818
                Funding
                Funded by: Österreichische Forschungsförderungsgesellschaft 10.13039/501100004955
                Award ID: 848446
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                broiler,16s rna sequencing,cecum,deoxynivalenol,lipopolysaccharide,microbiota
                Microbiology & Virology
                broiler, 16s rna sequencing, cecum, deoxynivalenol, lipopolysaccharide, microbiota

                Comments

                Comment on this article