4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detoxification of Deoxynivalenol by a Mixed Culture of Soil Bacteria With 3 -epi-Deoxynivalenol as the Main Intermediate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deoxynivalenol (DON) is a widely distributed mycotoxin that frequently occurs in various agricultural raw materials and feeds. DON acts as a virulence factor that accelerates the spread of plant diseases; moreover, its accumulation in grains causes yield loss and serious health problems to humans and livestock. Biodegradation of DON into less- or non-toxic substances using naturally existing microorganisms is considered the best approach for DON detoxification. Although various single isolates and mixed cultures capable of detoxifying DON have been reported, details of the metabolic pathways and the degrading enzymes/coding genes involved are scarce. In this study, we aimed to isolate DON-degrading bacteria from soil samples and explore the mechanisms. Toward this end, 85 soil samples collected from different provinces in China were enriched under aerobic conditions with mineral media containing 50 μg/ml of DON as the sole carbon source. The bacterial consortium LZ -N1 exhibited highly efficient and steady DON-transforming activity. High-throughput sequencing was used to characterize the composition of the involved microflora, and analysis of 16S rRNA sequences indicated that LZ -N1 was composed of at least 11 bacterial genera, with Pseudomonas accounting for nearly half the relative abundance. Coincubation of a mixed culture of two novel strains from the LZ-N1 consortium, namely Pseudomonas sp. Y1 and Lysobacter sp. S1, showed sustained transformation of DON into the metabolite 3- epi-deoxynivalenol, with no degradation products detected after 72 h. The cell-free supernatant, lysate, and cell debris of the mixed culture possessed DON-degrading ability, with the supernatant reaching a DON degradation rate of 100% within 48 h with 50 μg/ml of DON. This is the first report of two-step enzymatic epimerization of DON by a mixed culture, which may provide a new insight into this pathway for future applications in detoxification of DON-contaminated cereals and feed.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana.

            Plant pathogenic fungi of the genus Fusarium cause agriculturally important diseases of small grain cereals and maize. Trichothecenes are a class of mycotoxins produced by different Fusarium species that inhibit eukaryotic protein biosynthesis and presumably interfere with the expression of genes induced during the defense response of the plants. One of its members, deoxynivalenol, most likely acts as a virulence factor during fungal pathogenesis and frequently accumulates in grain to levels posing a threat to human and animal health. We report the isolation and characterization of a gene from Arabidopsis thaliana encoding a UDP-glycosyltransferase that is able to detoxify deoxynivalenol. The enzyme, previously assigned the identifier UGT73C5, catalyzes the transfer of glucose from UDP-glucose to the hydroxyl group at carbon 3 of deoxynivalenol. Using a wheat germ extract-coupled transcription/translation system we have shown that this enzymatic reaction inactivates the mycotoxin. This deoxynivalenol-glucosyltransferase (DOGT1) was also found to detoxify the acetylated derivative 15-acetyl-deoxynivalenol, whereas no protective activity was observed against the structurally similar nivalenol. Expression of the glucosyltransferase is developmentally regulated and induced by deoxynivalenol as well as salicylic acid, ethylene, and jasmonic acid. Constitutive overexpression in Arabidopsis leads to enhanced tolerance against deoxynivalenol.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Deoxynivalenol: Toxicity, mechanisms and animal health risks

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 September 2019
                2019
                : 10
                : 2172
                Affiliations
                Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University , Nanjing, China
                Author notes

                Edited by: Zofia Piotrowska-Seget, University of Silesia of Katowice, Poland

                Reviewed by: Chun Shiong Chong, University of Technology Malaysia, Malaysia; Santosh Kr. Karn, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science & Research, India

                *Correspondence: Fengxia Lu, lufengxia@ 123456njau.edu.cn

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.02172
                6764018
                31616395
                f07f562e-8dcc-4907-b466-cd2cfea74a59
                Copyright © 2019 Zhai, Zhong, Gao, Lu, Bie, Zhao, Zhang and Lu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 May 2019
                : 04 September 2019
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 41, Pages: 12, Words: 6485
                Funding
                Funded by: “12th Five-Year” National Science and Technology Support program
                Award ID: 2015BAD16B04
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                deoxynivalenol,enrichment,epimerization,bacterial consortium,mixed culture pseudomonas,lysobacter

                Comments

                Comment on this article