261
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The mitochondrial permeability transition pore: a mystery solved?

      review-article
      Frontiers in Physiology
      Frontiers Media S.A.
      mitochondria, permeability transition, calcium, FOF1 ATP synthase

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The permeability transition (PT) denotes an increase of the mitochondrial inner membrane permeability to solutes with molecular masses up to about 1500 Da. It is presumed to be mediated by opening of a channel, the permeability transition pore (PTP), whose molecular nature remains a mystery. Here I briefly review the history of the PTP, discuss existing models, and present our new results indicating that reconstituted dimers of the F OF 1 ATP synthase form a channel with properties identical to those of the mitochondrial megachannel (MMC), the electrophysiological equivalent of the PTP. Open questions remain, but there is now promise that the PTP can be studied by genetic methods to solve the large number of outstanding problems.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

          Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.

            We report here a new mitochondrial regulation occurring only in intact cells. We have investigated the effects of dimethylbiguanide on isolated rat hepatocytes, permeabilized hepatocytes, and isolated liver mitochondria. Addition of dimethylbiguanide decreased oxygen consumption and mitochondrial membrane potential only in intact cells but not in permeabilized hepatocytes or isolated mitochondria. Permeabilized hepatocytes after dimethylbiguanide exposure and mitochondria isolated from dimethylbiguanide pretreated livers or animals were characterized by a significant inhibition of oxygen consumption with complex I substrates (glutamate and malate) but not with complex II (succinate) or complex IV (N,N,N',N'-tetramethyl-1, 4-phenylenediamine dihydrochloride (TMPD)/ascorbate) substrates. Studies using functionally isolated complex I obtained from mitochondria isolated from dimethylbiguanide-pretreated livers or rats further confirmed that dimethylbiguanide action was located on the respiratory chain complex I. The dimethylbiguanide effect was temperature-dependent, oxygen consumption decreasing by 50, 20, and 0% at 37, 25, and 15 degrees C, respectively. This effect was not affected by insulin-signaling pathway inhibitors, nitric oxide precursor or inhibitors, oxygen radical scavengers, ceramide synthesis inhibitors, or chelation of intra- or extracellular Ca(2+). Because it is established that dimethylbiguanide is not metabolized, these results suggest the existence of a new cell-signaling pathway targeted to the respiratory chain complex I with a persistent effect after cessation of the signaling process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endonuclease G is an apoptotic DNase when released from mitochondria.

              Nucleosomal fragmentation of DNA is a hallmark of apoptosis (programmed cell death), and results from the activation of nucleases in cells undergoing apoptosis. One such nuclease, DNA fragmentation factor (DFF, a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD)), is capable of inducing DNA fragmentation and chromatin condensation after cleavage by caspase-3 (refs 2,3,4). However, although transgenic mice lacking DFF45 or its caspase cleavage site have significantly reduced DNA fragmentation, these mice still show residual DNA fragmentation and are phenotypically normal. Here we report the identification and characterization of another nuclease that is specifically activated by apoptotic stimuli and is able to induce nucleosomal fragmentation of DNA in fibroblast cells from embryonic mice lacking DFF. This nuclease is endonuclease G (endoG), a mitochondrion-specific nuclease that translocates to the nucleus during apoptosis. Once released from mitochondria, endoG cleaves chromatin DNA into nucleosomal fragments independently of caspases. Therefore, endoG represents a caspase-independent apoptotic pathway initiated from the mitochondria.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                10 May 2013
                2013
                : 4
                : 95
                Affiliations
                Department of Biomedical Sciences, University of Padova Padova, Italy
                Author notes

                Edited by: Luca Scorrano, University of Geneva, Switzerland

                Reviewed by: Eric Fontaine, Joseph Fourier University, France; Stephan Frank, Basel University, Switzerland

                *Correspondence: Paolo Bernardi, Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, I-35121 Padova, Italy. e-mail: bernardi@ 123456bio.unipd.it

                This article was submitted to Frontiers in Mitochondrial Research, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2013.00095
                3650560
                23675351
                a0d03439-4e0c-49ca-a9d8-32aa534f148d
                Copyright © 2013 Bernardi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 02 April 2013
                : 19 April 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 199, Pages: 12, Words: 12497
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                mitochondria,permeability transition,calcium,fof1 atp synthase
                Anatomy & Physiology
                mitochondria, permeability transition, calcium, fof1 atp synthase

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content451

                Cited by98

                Most referenced authors1,964