1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanical and biological characteristics of 3D fabricated clay mineral and bioceramic composite scaffold for bone tissue applications

      , ,
      Journal of the Mechanical Behavior of Biomedical Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Bone tissue engineering using 3D printing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

            Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing bioink shape fidelity to aid material development in 3D bioprinting.

              During extrusion-based bioprinting, the deposited bioink filaments are subjected to deformations, such as collapse of overhanging filaments, which compromises the ability to stack several layers of bioink, and fusion between adjacent filaments, which compromises the resolution and maintenance of a desired pore structure. When developing new bioinks, approaches to assess their shape fidelity after printing would be beneficial to evaluate the degree of deformation of the deposited filament and to estimate how similar the final printed construct would be to the design. However, shape fidelity has been prevalently assessed qualitatively through visual inspection after printing, hampering the direct comparison of the printability of different bioinks. In this technical note, we propose a quantitative evaluation for shape fidelity of bioinks based on testing the filament collapse on overhanging structures and the filament fusion of parallel printed strands. Both tests were applied on a hydrogel platform based on poloxamer 407 and poly(ethylene glycol) blends, providing a library of hydrogels with different yield stresses. The presented approach is an easy way to assess bioink shape fidelity, applicable to any filament-based bioprinting system and able to quantitatively evaluate this aspect of printability, based on the degree of deformation of the printed filament. In addition, we built a simple theoretical model that relates filament collapse with bioink yield stress. The results of both shape fidelity tests underline the role of yield stress as one of the parameters influencing the printability of a bioink. The presented quantitative evaluation will allow for reproducible comparisons between different bioink platforms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of the Mechanical Behavior of Biomedical Materials
                Journal of the Mechanical Behavior of Biomedical Materials
                Elsevier BV
                17516161
                February 2023
                February 2023
                : 138
                : 105633
                Article
                10.1016/j.jmbbm.2022.105633
                36603527
                a026649e-2e81-4e68-8508-b9516012f276
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article