25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      P-glycoproteins play a role in ivermectin resistance in cyathostomins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthelmintic resistance is a global problem that threatens sustainable control of the equine gastrointestinal cyathostomins (Phylum Nematoda; Superfamily Strongyloidea). Of the three novel anthelmintic classes that have reached the veterinary market in the last decade, none are currently licenced in horses, hence current control regimens focus on prolonging the useful lifespan of licenced anthelmintics. This approach would be facilitated by knowledge of the resistance mechanisms to the most widely used anthelmintics, the macrocyclic lactones (ML). There are no data regarding resistance mechanisms to MLs in cyathostomins, although in other parasitic nematodes, the ABC transporters, P-glycoproteins (P-gps), have been implicated in playing an important role. Here, we tested the hypothesis that P-gps are, at least in part, responsible for reduced sensitivity to the ML ivermectin (IVM) in cyathostomins; first, by measuring transcript levels of pgp-9 in IVM resistant versus IVM sensitive third stage larvae (L3) pre-and post-IVM exposure in vitro. We then tested the effect of a range of P-gp inhibitors on the effect of IVM against the same populations of L3 using the in vitro larval development test (LDT) and larval migration inhibition test (LMIT). We demonstrated that, not only was pgp-9 transcription significantly increased in IVM resistant compared to IVM sensitive L3 after anthelmintic exposure (p < 0.001), but inhibition of P-gp activity significantly increased sensitivity of the larvae to IVM in vitro, an effect only observed in the IVM resistant larvae in the LMIT. These data strongly implicate a role for P-gps in IVM resistance in cyathostomins. Importantly, this raises the possibility that P-gp inhibitor-IVM combination treatments might be used in vivo to increase the effectiveness of IVM against cyathostomins in Equidae.

          Graphical abstract

          Highlights

          • Pgp-9 transcript levels were higher in ivermectin resistant versus susceptible cyathostomin populations.

          • P-gp inhibitors increased ivermectin effect against cyathostomins in vitro.

          • P-gp activity may play a role in ivermectin resistance in cyathostomins.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs.

          We have generated mice homozygous for a disruption of the mdr1a (also called mdr3) gene, encoding a drug-transporting P-glycoprotein. The mice were viable and fertile and appeared phenotypically normal, but they displayed an increased sensitivity to the centrally neurotoxic pesticide ivermectin (100-fold) and to the carcinostatic drug vinblastine (3-fold). By comparison of mdr1a (+/+) and (-/-) mice, we found that the mdr1a P-glycoprotein is the major P-glycoprotein in the blood-brain barrier and that its absence results in elevated drug levels in many tissues (especially in brain) and in decreased drug elimination. Our findings explain some of the side effects in patients treated with a combination of carcinostatics and P-glycoprotein inhibitors and indicate that these inhibitors might be useful in selectively enhancing the access of a range of drugs to the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An inconvenient truth: global worming and anthelmintic resistance.

            Over the past 10-15 years, we have witnessed a rapid increase in both the prevalence and magnitude of anthelmintic resistance, and this increase appears to be a worldwide phenomenon. Reports of anthelmintic resistance to multiple drugs in individual parasite species, and in multiple parasite species across virtually all livestock hosts, are increasingly common. In addition, since the introduction of ivermectin in 1981, no novel anthelmintic classes were developed and introduced for use in livestock until recently with the launch of monepantel in New Zealand. Thus, livestock producers are often left with few options for effective treatment against many important parasite species. While new anthelmintic classes with novel mechanisms of action could potentially solve this problem, new drugs are extremely expensive to develop, and can be expected to be more expensive than older drugs. Thus, it seems clear that the "Global Worming" approach that has taken hold over the past 40-50 years must change, and livestock producers must develop a new vision for parasite control and sustainability of production. Furthermore, parasitologists must improve methods for study design and data analysis that are used for diagnosing anthelmintic resistance, especially for the fecal egg count reduction test (FECRT). Currently, standards for diagnosis of anthelmintic resistance using FECRT exist only for sheep. Lack of standards in horses and cattle and arbitrarily defined cutoffs for defining resistance, combined with inadequate analysis of the data, mean that errors in assigning resistance status are common. Similarly, the lack of standards makes it difficult to compare data among different studies. This problem needs to be addressed, because as new drugs are introduced now and in the future, the lack of alternative treatments will make early and accurate diagnosis of anthelmintic resistance increasingly important. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers.

              Polymer nanomaterials have sparked a considerable interest as vehicles used for diagnostic and therapeutic agents; research in nanomedicine has not only become a frontier movement but is also a revolutionizing drug delivery field. A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. With this foundation, nanoparticles with stealth properties that can circumvent RES and other clearance and defense mechanisms are the most promising. However, recent developments indicate that select polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such materials is Pluronic block copolymers that cause various functional alterations in cells. The key attribute for the biological activity of Pluronics is their ability to incorporate into membranes followed by subsequent translocation into the cells and affecting various cellular functions, such as mitochondrial respiration, ATP synthesis, activity of drug efflux transporters, apoptotic signal transduction, and gene expression. As a result, Pluronics cause drastic sensitization of MDR tumors to various anticancer agents, enhance drug transport across the blood brain and intestinal barriers, and causes transcriptional activation of gene expression both in vitro and in vivo. Collectively, these studies suggest that Pluronics have a broad spectrum of biological response modifying activities which make it one of the most potent drug targeting systems available, resulting in a remarkable impact on the emergent field of nanomedicine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Drugs Drug Resist
                Int J Parasitol Drugs Drug Resist
                International Journal for Parasitology: Drugs and Drug Resistance
                Elsevier
                2211-3207
                25 October 2017
                December 2017
                25 October 2017
                : 7
                : 3
                : 388-398
                Affiliations
                [a ]Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Brownlow Hill, Liverpool, United Kingdom
                [b ]Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, Scotland, United Kingdom
                [c ]The Donkey Sanctuary, Sidmouth, Devon, United Kingdom
                [d ]Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
                [e ]Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
                Author notes
                [1]

                Present address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES.

                Article
                S2211-3207(17)30075-1
                10.1016/j.ijpddr.2017.10.006
                5681340
                29121562
                9fe85cd8-32d4-4bac-9f71-b45baafb4b6d
                © 2017 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 July 2017
                : 17 October 2017
                : 23 October 2017
                Categories
                Article

                anthelmintic resistance,cyathostomins,ivermectin,p-glycoproteins

                Comments

                Comment on this article