17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Potential Role of Bone Morphogenetic Protein 7 in Shell Formation and Growth in the Razor Clam Sinonovacula constricta

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone morphogenetic proteins (BMPs) not only play essential roles in bone development but also are involved in embryonic growth, organogenesis cell proliferation and differentiation. However, the previous studies on the functions of shellfish BMPs genes are still very limited. To better understand its molecular structure and biological function, BMP7 of the razor clam Sinonovacula constricta ( Sc-BMP7) was cloned and characterized in this study. The full length of Sc-BMP7 is 2252 bp, including an open reading frame (ORF) of 1257 bp encoding 418 amino acids. The protein sequence included a signal peptide (1–32 aa), a prodomain (38–270 aa) and a TGF-β domain (317–418 aa). The quantitative expression of eleven adult tissues showed that Sc-BMP7 was significantly higher expressed in the gill, foot, and mantle ( P < 0.05), but lower in hemocytes and hepatopancreas. In the early development stages, low expression was detected in the stages of unfertilized mature eggs, fertilized eggs, 4-cell embryos, blastula, gastrulae, whereas it increased after the stage of trochophore and demonstrated the highest expression in umbo larvae ( P < 0.01). In shell repair experiment, Sc-BMP7 showed increasing expression level after 12 h. The higher expression of Sc-BMP7 was detected while Ca 2+ concentration was reduced in seawater. After inhibiting Sc-BMP7 expression using RNA interference (RNAi) technology, expression of Sc-BMP7 mRNA and protein were significantly down-regulated ( P < 0.05) in the central zone of mantle (nacre formation related tissue) and the pallial zone of mantle (prismatic layer formation related tissue). Association analysis identified two shared SNPs in exon of Sc-BMP7 gene from 246 individuals of two groups. These results indicated that BMP7 might be involved in shell formation and growth. These results would contribute to clarify the role of Sc-BMP7 in the regulation of growth and shell formation, and provide growth-related markers for molecular marker assisted breeding of this species.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone morphogenetic proteins: a critical review.

            Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone morphogenetic protein signaling in bone homeostasis.

              Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                28 August 2020
                2020
                : 11
                : 1059
                Affiliations
                Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University , Ningbo, China
                Author notes

                Edited by: Youji Wang, Shanghai Ocean University, China

                Reviewed by: Zhenhua Ma, South China Sea Fisheries Research Institute, China; Haihui Ye, Xiamen University, China

                *Correspondence: Yinghui Dong, dongyinghui118@ 123456126.com

                This article was submitted to Aquatic Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.01059
                7485270
                9f67fc34-b8ef-4ccb-9562-fbefab59fc69
                Copyright © 2020 Zhao, Cui, Yao, Lin and Dong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 March 2020
                : 31 July 2020
                Page count
                Figures: 5, Tables: 5, Equations: 0, References: 60, Pages: 12, Words: 0
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                sinonovacula constricta,bmp7,snp,growth traits,association,rnai
                Anatomy & Physiology
                sinonovacula constricta, bmp7, snp, growth traits, association, rnai

                Comments

                Comment on this article