50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted Overexpression of Osteoactivin in Cells of Osteoclastic Lineage Promotes Osteoclastic Resorption and Bone Loss in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation.

          T cell-produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-gamma is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-gamma has variable effects in bone is unknown. Here we show that IFN-gamma blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-alpha. Analysis of the in vivo effects of IFN-gamma in 3 mouse models of bone loss - ovariectomy, LPS injection, and inflammation via silencing of TGF-beta signaling in T cells - reveals that the net effect of IFN-gamma in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-gamma has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-gamma signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis.

            Although the extracellular matrix (ECM) is the functional element in articular cartilage and its degradation is central in the pathogenetic process in osteoarthritis (OA), increasing the knowledge about the cellular OA phenotype is essential. The aim of this study is therefore to provide a more complete picture of the cellular and molecular alterations detected in OA cartilage. Human articular cartilage biopsies were collected from donors with macroscopical and microscopical signs of OA as well as donors with no previous history of OA and with microscopically intact cartilage. RNA was isolated from the biopsies and subjected to whole genome microarray analysis. Important results from the microarray analysis were verified using real-time PCR and immunohistochemistry. Our results reveal several new candidate genes not previously associated with OA to display significantly higher expression in OA cartilage than in normal donor cartilage, including genes involved in bone formation (CLEC3B, CDH11, GPNMB, CLEC3A, CHST11, MSX1, MSX2) and genes encoding collagens (COL13A1, COL14A1, COL15A1, COL8A2). This study is the first to report a comprehensive gene expression analysis of human OA cartilage compared to control cartilage from donors lacking macroscopical and microscopical signs of OA using recently developed microarrays containing the whole human genome. Our results could broadly confirm previously published data on many characteristic features of OA as well as adding a panel of genes to the list of genes known to be differentially expressed in OA. Elucidation of the phenotypical alterations occurring in OA chondrocytes is important for the development of effective treatments for OA. 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses.

              The process of inflammation requires the selective expression of a suite of genes in cells of the macrophage lineage. To identify candidate regulators of inflammation, we used cDNA microarrays to compare the transcriptome of inflammatory macrophages (thioglycolate-elicited peritoneal macrophages), bone marrow-derived macrophages, nonadherent spleen cells, and fibroblasts. We identified genes that were macrophage restricted and further elevated in inflammatory macrophages, and characterized the function of one such gene, gpnmb. Gpnmb mRNA expression was enriched in myelomonocytic cell lines and macrophage-related tissues and strongly up-regulated during macrophage differentiation. Epitope-tagged GPNMB expressed in RAW264.7 cells exhibited a perinuclear distribution and colocalized with the Golgi marker coat protein beta. Upon activation of macrophages with IFN-gamma and LPS, GPNMB translocated from the Golgi apparatus to vesicular compartments scattered toward the periphery. Gpnmb overexpression in RAW264.7 cells caused a 2-fold reduction in the production of the cytokines IL-6 and IL-12p40 and the inflammatory mediator NO in response to LPS. DBA mice, which have an inactivating point mutation in the gpnmb gene, exhibited reduced numbers of myeloid cells, elevated numbers of thioglycolate-elicited peritoneal macrophages, and higher levels of proinflammatory cytokines in response to LPS. Thus, GPNMB acts as a negative regulator of macrophage inflammatory responses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 April 2012
                : 7
                : 4
                : e35280
                Affiliations
                [1 ]Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
                [2 ]Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans' Affair Medical Center, Loma Linda, California, United States of America
                Mayo Clinic College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: MS KL JW SM. Performed the experiments: MS MA. Analyzed the data: MS KL JW SM DB. Wrote the paper: MS KL.

                Article
                PONE-D-12-00748
                10.1371/journal.pone.0035280
                3335057
                22536365
                9f506a26-d17e-4c7b-b05a-b6bb020f2999
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 6 January 2012
                : 14 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Bone
                Physiological Processes
                Biomineralization
                Biochemistry
                Metabolism
                Bone and Mineral Metabolism
                Proteins
                Transmembrane Proteins
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Women's Health
                Osteopenia and Osteoporosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article