25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms

      1 , 2 , 1 , 2
      Annual Review of Physiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.

            Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation

              Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation.
                Bookmark

                Author and article information

                Journal
                Annual Review of Physiology
                Annu. Rev. Physiol.
                Annual Reviews
                0066-4278
                1545-1585
                February 10 2020
                February 10 2020
                : 82
                : 1
                : 507-529
                Affiliations
                [1 ]Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia;,
                [2 ]Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
                Article
                10.1146/annurev-physiol-021119-034425
                31553686
                bd769d47-e1fc-43ac-8619-32c92264ccd4
                © 2020
                History

                Comments

                Comment on this article