Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum. The overexpression of NtLTP4 in N. tabacum enhanced resistance to salt and drought stresses. Upon exposure to high salinity, NtLTP4-overexpressing lines (OE lines) accumulated low Na + levels. Salt-responsive genes, including Na +/H + exchangers ( NHX1) and high-affinity K + transporter1 ( HKT1), were dramatically higher in OE lines than in wild-type lines. NtLTP4 might regulate transcription levels of NHX1 and HKT1 to alleviate the toxicity of Na +. Interestingly, OE lines enhanced the tolerance of N. tabacum to drought stress by reducing the transpiration rate. Moreover, NtLTP4 could increase reactive oxygen species (ROS)-scavenging enzyme activity and expression levels to scavenge excess ROS under drought and high salinity conditions. We used a two-hybrid yeast system and screened seven putative proteins that interact with NtLTP4 in tobacco. An MAPK member, wound-induced protein kinase, was confirmed to interact with NtLTP4 via co-immunoprecipitation and a firefly luciferase complementation imaging assay. Taken together, this is the first functional analysis of NtLTP4, and proves that NtLTP4 positively regulates salt and drought stresses in N. tabacum.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Plant salt tolerance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant salt-tolerance mechanisms.

            Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.

              Agricultural productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. Overexpression of a vacuolar Na+/H+ antiport from Arabidopsis thaliana in Arabidopsis plants promotes sustained growth and development in soil watered with up to 200 millimolar sodium chloride. This salinity tolerance was correlated with higher-than-normal levels of AtNHX1 transcripts, protein, and vacuolar Na+/H+ (sodium/proton) antiport activity. These results demonstrate the feasibility of engineering salt tolerance in plants.
                Bookmark

                Author and article information

                Contributors
                zhchx@sdau.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 June 2018
                11 June 2018
                2018
                : 8
                : 8873
                Affiliations
                [1 ]ISNI 0000 0000 9482 4676, GRID grid.440622.6, State Key Laboratory of Crop Biology, College of Life Sciences, , Shandong Agricultural University, ; Tai′an, Shandong P. R. China
                [2 ]ISNI 0000 0000 9482 4676, GRID grid.440622.6, State Key Laboratory of Crop Biology, College of Agronomy, , Shandong Agricultural University, ; Tai′an, Shandong P. R. China
                Article
                27274
                10.1038/s41598-018-27274-8
                5995848
                29891874
                9f41fe6d-af80-4e67-b170-9e2afb1ae65a
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 January 2017
                : 25 May 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article