92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Cluster analysis and display of genome-wide expression patterns.

          A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.

            The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification.

              Reactive oxygen species (ROS) and other radicals are involved in a variety of biological phenomena, such as mutation, carcinogenesis, degenerative and other diseases, inflammation, aging, and development. ROS are well recognized for playing a dual role as deleterious and beneficial species. The objectives of this review are to describe oxidative stress phenomena, terminology, definitions, and basic chemical characteristics of the species involved; examine the biological targets susceptible to oxidation and the defense mechanisms of the organism against these reactive metabolites; and analyze methodologies, including immunohistochemical markers, used in toxicological pathology in the visualization of oxidative stress phenomena. Direct detection of ROS and other free radicals is difficult, because these molecules are short-lived and highly reactive in a nonspecific manner. Ongoing oxidative damage is, thus, generally analyzed by measurement of secondary products including derivatives of amino acids, nuclei acids, and lipid peroxidation. Attention has been focused on electrochemical methods based on voltammetry measurements for evaluating the total reducing power of biological fluids and tissues. This approach can function as a tool to assess the antioxidant-reducing profile of a biological site and follow changes in pathological situations. This review thus includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 October 2015
                2015
                : 10
                : 10
                : e0139938
                Affiliations
                [1 ]INRA, UR1037 Fish Physiology and Genomics, Rennes, France
                [2 ]INSERM UMR991, Rennes, France
                [3 ]Université de Rennes 1 Plateforme H2P2, Biosit, Rennes, France
                Centre of Marine Sciences & University of Algarve, PORTUGAL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IL AF. Performed the experiments: IL ALC JM SP AF. Analyzed the data: IL ALC JM SP AF. Contributed reagents/materials/analysis tools: IL ALC JM SP AF. Wrote the paper: IL ALC AF.

                Article
                PONE-D-15-24536
                10.1371/journal.pone.0139938
                4595143
                26439495
                9f1acfe1-b191-47c6-906a-7b7be133f865
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 9 June 2015
                : 18 September 2015
                Page count
                Figures: 4, Tables: 2, Pages: 22
                Funding
                This work was funded by the European Community's Seventh Framework (FP7/2007-2013) under grant agreement no. 222719-LIFECYCLE (to IL) and by INRA-PHASE (to IL) and IFR140 grants (to IL, AF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All microarray data are available from the GEO database (accession number GSE69409).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article