16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Characterization of MDR Escherichia coli Harboring bla OXA-48 on the IncL/M-type Plasmid Isolated from Blood Stream Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Escherichia coli is responsible for a wide variety of community and hospital acquired extraintestinal infections, and the emergence of ESBL resistant isolates is a major clinical concern. In this study, we characterized the genomic attributes of an OXA-48 and CTX-M-3 producing E. coli EC-IMP153. Whole-genome initial assembly produced 146 contigs with a combined 5,504,170 bp in size and a G+C content of 50.5%. wgSNPs-based phylogenetic comparison with 36 publically available genomes was also performed. Comprehensive genomic analysis showed that EC-IMP153 belonged to sequence type ST-405 and harbored several resistance determinants including the β-lactam resistance genes bla OXA-48, bla CTX-M-3, bla TEM-1B, bla OXA-1, and bla CMY-70, aminoglycoside fyuA and aac(3)IId, tetracycline tet(A) and tet(R), and fluoroquinolone gyrA, parC, and mfd resistance determinants. Plasmids with the following incompatibility groups were detected in silico and confirmed using PBRT: IncI1- α, IncL, IncW, Col (BS512), and IncF. To our knowledge this is the first in-depth genomic analysis of an OXA-48 producing E. coli ST-405 isolated from a patient in Lebanon and linked to a blood stream infection. Continuous monitoring is necessary to better understand the continued diffusion of such pathogens, especially in view of the population movements triggered by unrest in the Middle East.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ARDB—Antibiotic Resistance Genes Database

            The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database—the Antibiotic Resistance Genes Database (ARDB)—unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13 293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Integrated Pipeline for de Novo Assembly of Microbial Genomes

              Remarkable advances in DNA sequencing technology have created a need for de novo genome assembly methods tailored to work with the new sequencing data types. Many such methods have been published in recent years, but assembling raw sequence data to obtain a draft genome has remained a complex, multi-step process, involving several stages of sequence data cleaning, error correction, assembly, and quality control. Successful application of these steps usually requires intimate knowledge of a diverse set of algorithms and software. We present an assembly pipeline called A5 (Andrew And Aaron's Awesome Assembly pipeline) that simplifies the entire genome assembly process by automating these stages, by integrating several previously published algorithms with new algorithms for quality control and automated assembly parameter selection. We demonstrate that A5 can produce assemblies of quality comparable to a leading assembly algorithm, SOAPdenovo, without any prior knowledge of the particular genome being assembled and without the extensive parameter tuning required by the other assembly algorithm. In particular, the assemblies produced by A5 exhibit 50% or more reduction in broken protein coding sequences relative to SOAPdenovo assemblies. The A5 pipeline can also assemble Illumina sequence data from libraries constructed by the Nextera (transposon-catalyzed) protocol, which have markedly different characteristics to mechanically sheared libraries. Finally, A5 has modest compute requirements, and can assemble a typical bacterial genome on current desktop or laptop computer hardware in under two hours, depending on depth of coverage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                28 June 2018
                : 2018
                : 3036143
                Affiliations
                1Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos, Lebanon
                2Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
                3Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
                4Department of Pathology & Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
                Author notes

                Academic Editor: Alessandra Oliva

                Author information
                http://orcid.org/0000-0001-7388-6138
                http://orcid.org/0000-0002-7437-393X
                http://orcid.org/0000-0002-3653-8940
                Article
                10.1155/2018/3036143
                6046176
                30050923
                9da3105c-debf-4d32-93c3-04b0c5b07783
                Copyright © 2018 S. Alousi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 March 2018
                : 17 May 2018
                Funding
                Funded by: School of Arts
                Funded by: Sciences Research and Development Council
                Categories
                Research Article

                Comments

                Comment on this article