97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Natural Killer Cell Function by STAT3

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          CD56bright natural killer (NK) cells: an important NK cell subset.

          Human natural killer (NK) cells can be subdivided into different populations based on the relative expression of the surface markers CD16 and CD56. The two major subsets are CD56(bright) CD16(dim/) (-) and CD56(dim) CD16(+), respectively. In this review, we will focus on the CD56(bright) NK cell subset. These cells are numerically in the minority in peripheral blood but constitute the majority of NK cells in secondary lymphoid tissues. They are abundant cytokine producers but are only weakly cytotoxic before activation. Recent data suggest that under certain conditions, they have immunoregulatory properties, and that they are probably immediate precursors of CD56(dim) NK cells. CD56(bright) NK cell percentages are expanded or reduced in a certain number of diseases, but the significance of these variations is not yet clear.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.

            T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti-PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1(+) MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of TGFbeta in metastasis.

              The TGFbeta signaling pathway is conserved from flies to humans and has been shown to regulate such diverse processes as cell proliferation, differentiation, motility, adhesion, organization, and programmed cell death. Both in vitro and in vivo experiments suggest that TGFbeta can utilize these varied programs to promote cancer metastasis through its effects on the tumor microenvironment, enhanced invasive properties, and inhibition of immune cell function. Recent clinical evidence demonstrating a link between TGFbeta signaling and cancer progression is fostering interest in this signaling pathway as a therapeutic target. Anti-TGFbeta therapies are currently being developed and tested in pre-clinical studies. However, targeting TGFbeta carries a substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. Additionally, clinical and experimental results show that TGFbeta has diverse and often conflicting roles in tumor progression even within the same tumor types. The development of TGFbeta inhibitors for clinical use will require a deeper understanding of TGFbeta signaling, its consequences, and the contexts in which it acts.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/124408
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                11 April 2016
                2016
                : 7
                : 128
                Affiliations
                [1] 1Department of Radiation Oncology, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
                Author notes

                Edited by: Masoud H. Manjili, Virginia Commonwealth University Massey Cancer Center, USA

                Reviewed by: Gregory B. Lesinski, The Ohio State University Comprehensive Cancer Center, USA; Manel Juan, Hospital Clínic de Barcelona, Spain

                *Correspondence: Nicholas A. Cacalano, ncacalan@ 123456ucla.edu

                Specialty section: This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00128
                4827001
                27148255
                9d9a7b54-777c-4972-950b-60a11c67bdec
                Copyright © 2016 Cacalano.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 October 2015
                : 21 March 2016
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 217, Pages: 18, Words: 16522
                Funding
                Funded by: Department of Radiation Oncology, UCLA Health System 10.13039/100008341
                Categories
                Immunology
                Review

                Immunology
                signal transducer and activator of transcription,stat3 transcription factor,natural killer cells,chemokines,cytokines,cancer immunology

                Comments

                Comment on this article