Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer-Associated Fibroblasts Promote the Chemo-resistance in Gastric Cancer through Secreting IL-11 Targeting JAK/STAT3/Bcl2 Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Our aim was to detect the potential role of interleukin 11 (IL-11) in the development of chemo-resistance in gastric cancer and to reveal the mechanism involved in the process.

          Materials and Methods

          Here, we used flow cytometry to examine the percentage of cancer-associated-fibroblasts in tumor samples from chemo-resistant and -sensitive gastric cancer patients. Using MTT assay, we detected the cell viability under different conditions. Using quantitative real-time polymerase chain reaction and Western blotting, we determined the target expressions in mRNA and protein levels. We also performed immunohistochemistry and immunofluorescence to detect the target proteins under different conditions. Animal models were constructed to verify the potential role of IL-11 in chemo-resistant develop in vivo.

          Results

          Herein, we observed enriched cancer associated fibroblasts in drug resistant tumor tissues from gastric patients. Those fibroblasts facilitate the chemotherapeutic drugs resistance development through the secretion of IL-11, which activates the IL-11/IL-11R/gp130/JAK/STAT3 anti-apoptosis signaling pathway in gastric cancer cells. We found that the combination of chemotherapeutic drugs and JAK inhibitor overcomes the resistance and increases the survival of mice with gastric cancer xenografts.

          Conclusion

          Ourresults demonstrated that IL-11 contributed to the obtain ofresistance to chemotherapy drugs through gp130/JAK/STAT3/Bcl2 pathway, and targeting the IL-11 signaling pathway induced by fibroblasts might be a promising strategy to overcome the multi-drugs resistant cancer in clinic.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer-associated stromal fibroblasts promote pancreatic tumor progression.

          Pancreatic adenocarcinoma is characterized by a dense background of tumor associated stroma originating from abundant pancreatic stellate cells. The aim of this study was to determine the effect of human pancreatic stellate cells (HPSC) on pancreatic tumor progression. HPSCs were isolated from resected pancreatic adenocarcinoma samples and immortalized with telomerase and SV40 large T antigen. Effects of HPSC conditioned medium (HPSC-CM) on in vitro proliferation, migration, invasion, soft-agar colony formation, and survival in the presence of gemcitabine or radiation therapy were measured in two pancreatic cancer cell lines. The effects of HPSCs on tumors were examined in an orthotopic murine model of pancreatic cancer by co-injecting them with cancer cells and analyzing growth and metastasis. HPSC-CM dose-dependently increased BxPC3 and Panc1 tumor cell proliferation, migration, invasion, and colony formation. Furthermore, gemcitabine and radiation therapy were less effective in tumor cells treated with HPSC-CM. HPSC-CM activated the mitogen-activated protein kinase and Akt pathways in tumor cells. Co-injection of tumor cells with HPSCs in an orthotopic model resulted in increased primary tumor incidence, size, and metastasis, which corresponded with the proportion of HPSCs. HPSCs produce soluble factors that stimulate signaling pathways related to proliferation and survival of pancreatic cancer cells, and the presence of HPSCs in tumors increases the growth and metastasis of these cells. These data indicate that stellate cells have an important role in supporting and promoting pancreatic cancer. Identification of HPSC-derived factors may lead to novel stroma-targeted therapies for pancreatic cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted Cancer Therapy: The Next Generation of Cancer Treatment.

            Cancer is one of the leading causes of death in the United States along with heart disease. The hallmark of cancer treatment has been conventional chemotherapy. Chemotherapeutic drugs are designed to target not only rapidly dividing cells, such as cancer cells, but also certain normal cells, such as intestinal epithelium. Over the past several years, a new generation of cancer treatment has come to the forefront, i.e, targeted cancer therapies. Like conventional chemotherapy, targeted cancer therapies use pharmacological agents that inhibit growth, increase cell death and restrict the spread of cancer. As the name suggests, targeted therapies interfere with specific proteins involved in tumorigenesis. Rather than using broad base cancer treatments, focusing on specific molecular changes which are unique to a particular cancer, targeted cancer therapies may be more therapeutically beneficial for many cancer types, including lung, colorectal, breast, lymphoma and leukemia. Moreover, recent advances have made it possible to analyze and tailor treatments to an individual patient's tumor. There are three main types of targeted cancer therapies; 1) monoclonal antibodies, 2) small molecule inhibitors and 3) immunotoxins. This review will discuss these three classes of targeted therapies in detail, as well as the biology behind targeted cancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice.

              Deregulated activation of STAT3 is frequently associated with many human hematological and epithelial malignancies, including gastric cancer. While exaggerated STAT3 signaling facilitates an antiapoptotic, proangiogenic, and proproliferative environment for neoplastic cells, the molecular mechanisms leading to STAT3 hyperactivation remain poorly understood. Using the gp130(Y757F/Y757F) mouse model of gastric cancer, which carries a mutated gp130 cytokine receptor signaling subunit that cannot bind the negative regulator of cytokine signaling SOCS3 and is characterized by hyperactivation of the signaling molecules STAT1 and STAT3, we have provided genetic evidence that IL-11 promotes chronic gastric inflammation and associated tumorigenesis. Expression of IL-11 was increased in gastric tumors in gp130(Y757F/Y757F) mice, when compared with unaffected gastric tissue in wild-type mice, while gp130(Y757F/Y757F) mice lacking the IL-11 ligand-binding receptor subunit (IL-11Ralpha) showed normal gastric STAT3 activation and IL-11 expression and failed to develop gastric tumors. Furthermore, reducing STAT3 activity in gp130(Y757F/Y757F) mice, either genetically or by therapeutic administration of STAT3 antisense oligonucleotides, normalized gastric IL-11 expression and alleviated gastric tumor burden. Surprisingly, the genetic reduction of STAT1 expression also reduced gastric tumorigenesis in gp130(Y757F/Y757F) mice and coincided with reduced gastric inflammation and IL-11 expression. Collectively, our data have identified IL-11 as a crucial cytokine promoting chronic gastric inflammation and associated tumorigenesis mediated by excessive activation of STAT3 and STAT1.
                Bookmark

                Author and article information

                Journal
                Cancer Res Treat
                Cancer Res Treat
                CRT
                Cancer Research and Treatment : Official Journal of Korean Cancer Association
                Korean Cancer Association
                1598-2998
                2005-9256
                January 2019
                20 April 2018
                : 51
                : 1
                : 194-210
                Affiliations
                [1 ]Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
                [2 ]Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, China
                [3 ]Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, China
                Author notes
                Correspondence: Yiping Mou, MD, PhD Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China and Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China Tel: 86-0571-85893408 Fax: 86-0571-87091089 E-mail: yp66self@ 123456163.com
                Article
                crt-2018-031
                10.4143/crt.2018.031
                6333970
                29690750
                6ec20ee4-a440-48a4-ba1e-d518ca3e2f92
                Copyright © 2019 by the Korean Cancer Association

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 January 2018
                : 15 April 2018
                Categories
                Original Article

                Oncology & Radiotherapy
                cancer-associated fibroblasts,stomach noplasms,drug resistance,interleukin-11,jak/stat3

                Comments

                Comment on this article