5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-read single-cell RNA sequencing enables the study of cancer subclone-specific genotype and phenotype in chronic lymphocytic leukemia

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bruton’s tyrosine kinase (BTK) inhibitors are effective for the treatment of chronic lymphocytic leukemia (CLL) due to BTK’s role in B cell survival and proliferation. Treatment resistance is most commonly caused by the emergence of the hallmark BTK C481S mutation that inhibits drug binding. In this study, we aimed to investigate whether the presence of additional CLL driver mutations in cancer subclones harboring a BTK C481S mutation accelerates subclone expansion. In addition, we sought to determine whether BTK-mutated subclones exhibit distinct transcriptomic behavior when compared to other cancer subclones. To achieve these goals, we employ our recently published method ( Qiao et al. 2024) that combines bulk DNA sequencing and single-cell RNA sequencing (scRNA-seq) data to genotype individual cells for the presence or absence of subclone-defining mutations. While the most common approach for scRNA-seq includes short-read sequencing, transcript coverage is limited due to the vast majority of the reads being concentrated at the priming end of the transcript. Here, we utilized MAS-seq, a long-read scRNAseq technology, to substantially increase transcript coverage across the entire length of the transcripts and expand the set of informative mutations to link cells to cancer subclones in six CLL patients who acquired BTK C481S mutations during BTK inhibitor treatment. We found that BTK-mutated subclones often acquire additional mutations in CLL driver genes, leading to faster subclone proliferation. When examining subclone-specific gene expression, we found that in one patient, BTK-mutated subclones are transcriptionally distinct from the rest of the malignant B cell population with an overexpression of CLL-relevant genes.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate short read alignment with Burrows–Wheeler transform

            Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BEDTools: a flexible suite of utilities for comparing genomic features

              Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing web-based methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools Contact: aaronquinlan@gmail.com; imh4y@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                16 March 2024
                : 2024.03.15.585298
                Affiliations
                [1 ]Department of Human Genetics, University of Utah, Salt Lake City, UT
                [2 ]Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
                [3 ]Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
                [4 ]Division of Hematology, University of North Carolina, Chapel Hill, NC
                [5 ]The Ohio State University Comprehensive Cancer Center, Columbus, OH
                Author notes
                [*]

                G.T.M. and J.A.W. contributed equally to this work.

                Author contributions: G.S.B., X.H., Y.Q., D.S., D.M.S., J.A.W., and G.T.M conceived and designed the project. D.M.S. and J.A.W. contributed to the project coordination, clinical oversight, and sample collection and transfer. P.J.M. performed the sample preparation for long-read scRNA-seq. G.S.B performed the data processing of the genomic and long-read scRNA-seq data, performed the subclone and gene-expression analysis, and interpreted the results. X.H., Y.Q., and G.T.M. contributed to the analysis design and assisted in data analysis and the interpretation of results. G.S.B. wrote the manuscript with significant contributions from X.H., Y.Q., and G.T.M. All authors contributed to manuscript editing and refinement.

                Corresponding Author Gabor Marth 15 North 2030 East, Room 7410B, Salt Lake City, UT 841121, gmarth@ 123456genetics.utah.edu
                Author information
                http://orcid.org/0000-0003-2086-5266
                http://orcid.org/0000-0003-0222-1694
                Article
                10.1101/2024.03.15.585298
                10979946
                38559060
                9d731f8d-313e-4ae2-a66a-c98643cb25f3

                This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                Comments

                Comment on this article