8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease.

          A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemic arboviral diseases: priorities for research and public health.

            For decades, arboviral diseases were considered to be only minor contributors to global mortality and disability. As a result, low priority was given to arbovirus research investment and related public health infrastructure. The past five decades, however, have seen an unprecedented emergence of epidemic arboviral diseases (notably dengue, chikungunya, yellow fever, and Zika virus disease) resulting from the triad of the modern world: urbanisation, globalisation, and international mobility. The public health emergency of Zika virus, and the threat of global spread of yellow fever, combined with the resurgence of dengue and chikungunya, constitute a wake-up call for governments, academia, funders, and WHO to strengthen programmes and enhance research in aedes-transmitted diseases. The common features of these diseases should stimulate similar research themes for diagnostics, vaccines, biological targets and immune responses, environmental determinants, and vector control measures. Combining interventions known to be effective against multiple arboviral diseases will offer the most cost-effective and sustainable strategy for disease reduction. New global alliances are needed to enable the combination of efforts and resources for more effective and timely solutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker.

              The flavivirus nonstructural glycoprotein NS1 is an enigmatic protein whose structure and mechanistic function have remained somewhat elusive ever since it was first reported in 1970 as a viral antigen circulating in the sera of dengue-infected patients. All flavivirus NS1 genes share a high degree of homology, encoding a 352-amino-acid polypeptide that has a molecular weight of 46-55 kDa, depending on its glycosylation status. NS1 exists in multiple oligomeric forms and is found in different cellular locations: a cell membrane-bound form in association with virus-induced intracellular vesicular compartments, on the cell surface and as a soluble secreted hexameric lipoparticle. Intracellular NS1 co-localizes with dsRNA and other components of the viral replication complex and plays an essential cofactor role in replication. Although this makes NS1 an ideal target for inhibitor design, the precise nature of its cofactor function has yet to be elucidated. A plethora of potential interacting partners have been identified, particularly for the secreted form of NS1, with many being implicated in immune evasion strategies. Secreted and cell-surface-associated NS1 are highly immunogenic and both the proteins themselves and the antibodies they elicit have been implicated in the seemingly contradictory roles of protection and pathogenesis in the infected host. Finally, NS1 is also an important biomarker for early diagnosis of disease. In this article, we provide an overview of these somewhat disparate areas of research, drawing together the wealth of data generated over more than 40 years of study of this fascinating protein. Copyright © 2013 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 July 2019
                2019
                : 10
                : 1651
                Affiliations
                [1] 1Nuffield Department of Medicine, Jenner Institute, University of Oxford , Oxford, United Kingdom
                [2] 2Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV) , Mexico City, Mexico
                Author notes

                Edited by: Rosana Pelayo, Mexican Social Security Institute (IMSS), Mexico

                Reviewed by: Ronaldo Mohana Borges, Federal University of Rio de Janeiro, Brazil; Xuping Xie, University of Texas Medical Branch at Galveston, United States

                *Correspondence: Arturo Reyes-Sandoval arturo.reyes@ 123456ndm.ox.ac.uk

                This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.01651
                6657369
                31379848
                9ce4b833-465e-4e11-aa82-a2b6c7329ac1
                Copyright © 2019 Reyes-Sandoval and Ludert.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2019
                : 03 July 2019
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 55, Pages: 6, Words: 4920
                Categories
                Immunology
                Mini Review

                Immunology
                dengue,zika,flavivirus,ns1 protein,arbovirus,vaccines against flavivirus,immuno-pathogenesis,molecular mimicry

                Comments

                Comment on this article