17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity

      , ,
      American Journal of Physiology-Renal Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neonates cannot concentrate their urine to the same degree as adults. One of the key factors in concentrating the urine is the renal collecting duct osmotic water permeability (Pf) response to antidiuretic hormone (ADH). Neonatal cortical collecting ducts have a blunted Pf response to ADH compared with adult tubules (Pf: 119.0 +/- 12.5 vs. 260.1 +/- 29.5 microm/s, P < 0.05). We found that the phosphodiesterase activity in the neonatal collecting ducts was higher than that in the adult collecting ducts (3,970 +/- 510 vs. 2,440 +/- 220 cpm.microg tubular protein-1.20 min-1, P < 0.05). After pretreatment of in vitro microperfused tubules with the nonspecific phosphodiesterase inhibitor IBMX (10-6 M in the bath), the Pf response to ADH in neonatal collecting ducts was 271.4 +/- 51.7 microm/s, which was identical to that of the adult collecting duct [315.3 +/- 31.3 microm/s, P = not significant (NS)]. Rolipram, a specific type IV phosphodiesterase inhibitor, lowered the elevated phosphodiesterase activity in the neonatal tubules to that in the adult tubules (2,460 +/- 210 vs. 2,160 +/- 230 cpm.microg tubular protein-1.20 min-1, P = NS). Neonatal tubules pretreated with rolipram (10-5 M) in the bath also had a Pf response to ADH that was comparable to that of the adult tubules (258.2 +/- 17.0 vs. 271.4 +/- 32.6 microm/s, P = NS). Thus the elevated phosphodiesterase activity in the neonatal tubules appears to be due to an increase in type IV phosphodiesterase activity. Hence, one of the key factors in the decreased ability of neonates to concentrate their urine is overactivity of phosphodiesterase in the cortical collecting duct that blunts the neonatal collecting duct Pf response to ADH.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Prostaglandin E receptors and the kidney.

          R Breyer (2000)
          Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially characterized, and each receptor has a distinct role. EP(1) expression predominates in the collecting duct where it inhibits Na(+) absorption, contributing to natriuresis. The EP(2) receptor regulates vascular reactivity, and EP(2) receptor-knockout mice have salt-sensitive hypertension. The EP(3) receptor is also expressed in vessels as well as in the thick ascending limb and collecting duct, where it antagonizes vasopressin-stimulated salt and water transport. EP(4) mRNA is expressed in the glomerulus and collecting duct and may regulate glomerular tone and renal renin release. The capacity of PGE(2) to bidirectionally modulate vascular tone and epithelial transport via constrictor EP(1) and EP(3) receptors vs. dilator EP(2) and EP(4) receptors allows PGE(2) to serve as a buffer, preventing excessive responses to physiological perturbations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preparation and study of fragments of single rabbit nephrons.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease.

              Aquaporin-1 (AQP1), located in proximal tubules (PT) and descending thin limbs of Henle (DTL), and aquaporin-2 (AQP2), located in collecting ducts (CD), are channels involved in water transport across renal tubule epithelia. Using antibodies against AQP1 and AQP2, we here show expression of AQP1 and AQP2 in normal human developing and adult kidneys and in autosomal dominant polycystic kidney disease (ADPKD). Unlike in rats, AQP1 and AQP2 are expressed early during human nephrogenesis (12-wk gestation). AQP1 was first seen in developing PT epithelia, predominantly in apical cell membranes, and, at 15 wk, was also detected in DTL. AQP2 was seen in apical cell membranes of the branching ureteric bud and CD system from 12 wk and throughout development. In adult normal kidneys, AQP1 was localized to apical and basolateral membrane domains of PT and DTL, whereas AQP2 was restricted to principal cells of CD. This distribution of AQP1 and AQP2 was also seen in early stage ADPKD, except that AQP1 was mostly located in the apical membrane region of expanded PT. In end-stage ADPKD, two-thirds of the cysts expressed either AQP1 or AQP2, but these two water channels were never colocalized in the same cyst. Western blot analysis showed maximal expression of AQP1 and AQP2 in normal adult kidneys, lower levels in fetal kidneys, and decreases associated with degree of cystic progression in ADPKD. These data 1) demonstrate specific, mutually exclusive localization of AQP1 and AQP2 in human fetal and adult kidneys; 2) show that both channels are expressed early during nephrogenesis; and 3) show that the mutual exclusivity of localization is maintained even into end-stage ADPKD.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                February 2004
                February 2004
                : 286
                : 2
                : F317-F322
                Article
                10.1152/ajprenal.00122.2003
                4129230
                14644747
                9ca970fe-168d-4ef9-b81b-69dbe5d27f1a
                © 2004
                History

                Comments

                Comment on this article