13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems

      1 , 2 , 1 , 2
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: not found
          • Article: not found

          Surface plasmon resonance sensors: review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor self-seeding by circulating cancer cells.

            Cancer cells that leave the primary tumor can seed metastases in distant organs, and it is thought that this is a unidirectional process. Here we show that circulating tumor cells (CTCs) can also colonize their tumors of origin, in a process that we call "tumor self-seeding." Self-seeding of breast cancer, colon cancer, and melanoma tumors in mice is preferentially mediated by aggressive CTCs, including those with bone, lung, or brain-metastatic tropism. We find that the tumor-derived cytokines IL-6 and IL-8 act as CTC attractants whereas MMP1/collagenase-1 and the actin cytoskeleton component fascin-1 are mediators of CTC infiltration into mammary tumors. We show that self-seeding can accelerate tumor growth, angiogenesis, and stromal recruitment through seed-derived factors including the chemokine CXCL1. Tumor self-seeding could explain the relationships between anaplasia, tumor size, vascularity and prognosis, and local recurrence seeded by disseminated cells following ostensibly complete tumor excision. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic DNA nanotechnology using strand-displacement reactions.

              The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                September 02 2019
                September 02 2019
                June 28 2019
                : 58
                : 36
                : 12355-12368
                Affiliations
                [1 ]Electronics Design Center; Case Western Reserve University; Cleveland Ohio 44106 USA
                [2 ]Department of Chemical and Biomolecular Engineering; Case Western Reserve University; Cleveland Ohio 44106 USA
                Article
                10.1002/anie.201901879
                30990933
                9c337d15-7d60-40e4-93e9-1abe6ac69287
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article