28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease (HD) is caused by an expanded CAG tract in the Interesting transcript 15 ( IT15) gene encoding the 350 kDa huntingtin protein. Cellular stresses can trigger the release of huntingtin from the endoplasmic reticulum, allowing huntingtin nuclear entry. Here, we show that endogenous, full-length huntingtin localizes to nuclear cofilin–actin rods during stress and is required for the proper stress response involving actin remodeling. Mutant huntingtin induces a dominant, persistent nuclear rod phenotype similar to that described in Alzheimer's disease for cytoplasmic cofilin–actin rods. Using live cell temporal studies, we show that this stress response is similarly impaired when mutant huntingtin is present, or when normal huntingtin levels are reduced. In clinical lymphocyte samples from HD patients, we have quantitatively detected cross-linked complexes of actin and cofilin with complex formation varying in correlation with disease progression. By live cell fluorescence lifetime imaging measurement–Förster resonant energy transfer studies and western blot assays, we quantitatively observed that stress-activated tissue transglutaminase 2 (TG2) is responsible for the actin–cofilin covalent cross-linking observed in HD. These data support a direct role for huntingtin in nuclear actin re-organization, and describe a new pathogenic mechanism for aberrant TG2 enzymatic hyperactivity in neurodegenerative diseases.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

          The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging.

            The long-term health of the cell is inextricably linked to protein quality control. Under optimal conditions this is accomplished by protein homeostasis, a highly complex network of molecular interactions that balances protein biosynthesis, folding, translocation, assembly/disassembly, and clearance. This review will examine the consequences of an imbalance in homeostasis on the flux of misfolded proteins that, if unattended, can result in severe molecular damage to the cell. Adaptation and survival requires the ability to sense damaged proteins and to coordinate the activities of protective stress response pathways and chaperone networks. Yet, despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress when conformationally challenged aggregation-prone proteins are expressed in cancer, metabolic disease, and neurodegenerative disease. The decline in biosynthetic and repair activities that compromises the integrity of the proteome is influenced strongly by genes that control aging, thus linking stress and protein homeostasis with the health and life span of the organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells.

              Lengthening a glutamine tract in huntingtin confers a dominant attribute that initiates degeneration of striatal neurons in Huntington's disease (HD). To identify pathways that are candidates for the mutant protein's abnormal function, we compared striatal cell lines established from wild-type and Hdh(Q111) knock-in embryos. Alternate versions of full-length huntingtin, distinguished by epitope accessibility, were localized to different sets of nuclear and perinuclear organelles involved in RNA biogenesis and membrane trafficking. However, mutant STHdh(Q111) cells also exhibited additional forms of the full-length mutant protein and displayed dominant phenotypes that did not mirror phenotypes caused by either huntingtin deficiency or excess. These phenotypes indicate a disruption of striatal cell homeostasis by the mutant protein, via a mechanism that is separate from its normal activity. They also support specific stress pathways, including elevated p53, endoplasmic reticulum stress response and hypoxia, as potential players in HD.
                Bookmark

                Author and article information

                Journal
                Hum Mol Genet
                hmg
                hmg
                Human Molecular Genetics
                Oxford University Press
                0964-6906
                1460-2083
                15 May 2011
                25 February 2011
                25 February 2011
                : 20
                : 10
                : 1937-1951
                Affiliations
                [1 ]Department of Biochemistry and Biomedical Sciences, simpleMcMaster University , 1200 Main Street West, Hamilton, Ontario, CanadaL8N3Z5,
                [2 ]Department of Biochemistry and Molecular Biology, simpleColorado State University , Fort Collins, CO 80523-1870, USA and
                [3 ]Department of Neurodegenerative Disease, UCL Institute of Neurology, simpleNational Hospital for Neurology and Neurosurgery , Queen Square, London WC1N 1NG, UK
                Author notes
                [* ]To whom correspondence should be addressed. Email: truantr@ 123456mcmaster.ca
                Article
                ddr075
                10.1093/hmg/ddr075
                3080606
                21355047
                9c1563a0-19a9-417a-9fe3-ebd151cd5505
                © The Author 2011. Published by Oxford University Press

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 October 2010
                : 14 January 2011
                : 21 February 2011
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article