3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating JNK-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation

      , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid β-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPK: guardian of metabolism and mitochondrial homeostasis.

            Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics and functions of lipid droplets

              Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                November 2023
                October 27 2023
                : 12
                : 11
                : 1922
                Article
                10.3390/antiox12111922
                9baa10c6-253e-449d-ab53-ef3c65e0e67e
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article