7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lipotoxicity, aging, and muscle contractility: does fiber type matter?

      , ,
      GeroScience
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">Sarcopenia is a universal characteristic of the aging process and is often accompanied by increases in whole-body adiposity. These changes in body composition have important clinical implications, given that loss of muscle and gain of fat mass are both significantly and independently associated with declining physical performance as well as an increased risk for disability, hospitalizations, and mortality in older individuals. This increased fat mass is not exclusively stored in adipose depots but may become deposited in non-adipose tissues, such as skeletal muscle, when the oxidative capacity of the adipose tissue itself is exceeded. The redistributed adipose tissue is thought to exert detrimental local effects on the muscle environment given the close proximity. Thus, sarcopenia observed with aging may be better defined in the context of loss of muscle quality rather than loss of muscle quantity per se. In this perspective, we briefly review the age-related physiological changes in cellularity, secretory profiles, and inflammatory status of adipose tissue which drive lipotoxicity (spillover) of skeletal muscle and then provide evidence of how this may affect specific fiber type contractility. We focus on biological contributors (cellular machinery) to contractility for which there is some evidence of vulnerability to lipid stress distinguishing between fiber types. </p>

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs

          The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1 −/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1 −/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study

            Background Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescence-associated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. Methods A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. Findings Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50). Interpretation Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016–2018).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting senescent cells alleviates obesity‐induced metabolic dysfunction

              Abstract Adipose tissue inflammation and dysfunction are associated with obesity‐related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug‐inducible “suicide” genes driven by the p16 Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra‐abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity‐related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity‐related metabolic dysfunction and its complications.
                Bookmark

                Author and article information

                Journal
                GeroScience
                GeroScience
                Springer Science and Business Media LLC
                2509-2715
                2509-2723
                June 2019
                June 22 2019
                June 2019
                : 41
                : 3
                : 297-308
                Article
                10.1007/s11357-019-00077-z
                6702511
                31227962
                763780a4-615c-4c1c-a108-0d50b5eac96f
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article