11
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune Thrombocytopenic Purpura following Administration of mRNA-Based SARS-CoV-2 and MMR Vaccinations: A Cautionary Tale

      case-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a case of immune thrombocytopenic purpura (ITP) in an otherwise healthy 31-year-old man following coadministration of the live measles, mumps, and rubella (MMR) vaccine with the Pfizer-BioNTech mRNA SARS-CoV-2 vaccine. The patient was hospitalized briefly and treated for ITP with glucocorticoids, IVIG, and platelet transfusion. Although our patient's clinical presentation and subsequent course are similar to those of other cases of ITP in association with SARS-CoV-2 vaccination, to our knowledge, this is the first reported case of ITP following MMR and mRNA SARS-CoV-2 vaccine coadministration. It would be impossible to conclusively prove that the patient's thrombocytopenia was secondary to the SARS-CoV-2 vaccine alone, the MMR vaccine, or an additive effect of both vaccines. However, with the CDC guidelines recommending the coadministration of the mRNA SARS-CoV-2 vaccine without regards to timing with other vaccines, we urge further caution as there is limited evidence to inform practice. This case highlights the need for further safety data regarding the coadministration and timing of the mRNA SARS-CoV-2 vaccine with other vaccines.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          SARS-CoV-2 Vaccine–Induced Immune Thrombotic Thrombocytopenia

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Thrombocytopenia following Pfizer and Moderna SARS‐CoV ‐2 vaccination

            1 Cases of apparent secondary immune thrombocytopenia (ITP) after SARS‐CoV‐2 vaccination with both the Pfizer and Moderna versions have been reported and reached public attention. Public alarm was heightened following the death of the first identified patient from an intracranial hemorrhage, which was reported on the Internet, then in USA Today 1 and then in The New York Times. 2 Described below, we have collected a series of cases of very low platelet counts occurring within 2 weeks of vaccination in order to enhance our understanding of the possible relationship, if any, between SARS‐CoV‐2 vaccination and development of ITP with implications for surveillance and management. Twenty case reports of patients with thrombocytopenia following vaccination, 17 without pre‐existing thrombocytopenia and 14 with reported bleeding symptoms prior to hospitalization were identified upon review of data available from the Centers for Disease Control and Prevention (CDC), the Food and Drug Administration (FDA), agencies of the U.S. Department of Health and Human Services (HHS) Vaccine Adverse Events Reporting System (VAERS), published reports, 3 , 4 and via direct communication with patients and treating providers. These cases were investigated as suspicious for new onset, post‐vaccination secondary ITP; we could not exclude exacerbation of clinically undetected ITP. Search terms relating to “decreased platelet count”, “immune thrombocytopenia”, “hemorrhage”, “petechiae”, and “contusion” were utilized to identify cases reported in VAERS. The reports describing 19 of 20 patients included age (range 22–73 years old; median 41 years) and gender (11 females and 8 males). Nine received the Pfizer vaccine and 11 received the Moderna vaccine. All 20 patients were hospitalized and most patients presented with petechiae, bruising or mucosal bleeding (gingival, vaginal, epistaxis) with onset of symptoms between 1–23 days (median 5 days) post vaccination. Platelet counts at presentation were available for all 20 cases with the majority being at or below 10 × 109/L (range 1–36 × 109/L; median 2 × 109/L). One patient had known ITP in remission; another had mild–moderate thrombocytopenia in 2019 with note of positive anti‐platelet antibodies, a third had previous mild thrombocytopenia (145 × 109/L) while a fourth had inherited thrombocytopenia with baseline platelet counts of 40–60 × 109/L. Three other patients had known autoimmune conditions including hypothyroidism, Crohns disease, or positive tests for anti‐thyroglobulin antibodies. Treatment for suspected ITP was described in 15 of the cases, including corticosteroids n = 14, intravenous immune globulin (IVIG) n = 12, platelet transfusions n = 8, rituximab n = 2, romiplostim = 1, vincristine = 1, and aminocaproic acid (Amicar) n = 1; combination therapy was used in most patients. Initial outcomes were reported in 16 cases. An improvement in the platelet count was described in patients treated with platelet transfusion alone (n = 1), corticosteroids alone (n = 1), corticosteroids + platelet transfusion (n = 3), corticosteroids + IVIG (n = 3), corticosteroids + IVIG + platelet transfusion (n = 5), corticosteroids +IVIG + rituximab + vincristine + romiplostim (n = 1). The index patient passed away after a cerebral hemorrhage, as mentioned, notwithstanding having received emergent treatment with IVIG, steroids, rituximab and platelet transfusions. Another patient had no improvement in platelet counts after 3 days, but treatment details are not specified. Five additional patients with ”thrombocytopenia” or ”immune thrombocytopenia” post vaccination were identified in VAERS (last accessed 2/5/21), but either available information is insufficient for inclusion or the clinical scenarios suggest alternative processes contributing to thrombocytopenia. One 59 year‐old man was identified with ”thrombocytopenia” at an unspecified time after receiving the Pfizer vaccine without additional details regarding platelet count, clinical course, or treatment. A 44 year‐old woman was hospitalized for nausea, vomiting and chest pain on the day that she received the Pfizer vaccine. Her laboratory values included a platelet count of 85 × 109/L and a peak troponin level of 4 ng/mL (normal < = 0.04 ng/mL). The patient was diagnosed with myocarditis but did not require treatment for thrombocytopenia. Her platelets were 61 × 109/L on discharge, but subsequent platelet counts were not reported. The third is a patient without age or gender reported who was found to have thrombocytopenia, neutropenia and a pulmonary embolism at an unspecified time following the Pfizer vaccine. This patient was hospitalized and passed away; no additional details were available. A fourth patient, a 37‐year‐old man, had ”thrombocytopenia requiring hospitalization, meds and platelet infusion” 4 days following the Moderna vaccine with no details regarding presenting symptoms, platelet count, treatment or outcome. The last patient is an 80 year‐old man with multiple medical problems including recent transcatheter aortic valve replacement, hypothyroidism, and diverticulosis who presented 6 days after the Pfizer vaccine with bloody diarrhea, hemoglobin 8.7 g/dL and platelets 60 × 109/L. He received several units of packed red blood cells and two units of platelets with improvement to 101 × 109/L and was discharged 5 days later. There were a handful of reports with minimal additional details alluding to a male who passed away in December from brain hemorrhage following the Pfizer vaccine – these could be describing the index patient. We did not attempt to obtain information on patients with pre‐existing active ITP who received a SARS‐CoV‐2 vaccine for this report. We identified additional reports of post‐vaccination bruising or bleeding unrelated to the injection site, but no mention of platelet counts, or thrombocytopenia, was provided. Note, VAERS was last accessed on January 29, 2021 for this search. Fourteen patients reported ”petechiae”/”bruising” of whom three were evaluated in the office and one presented to the emergency room. There have been 51 reports of” bleeding”/”hemorrhage” (vaginal n = 11, conjunctival n = 13, cerebral n = 6, gingival n = 2, gastrointestinal n = 5, epistaxis n = 12, and cutaneous n = 2). There were 31 patients who did not seek additional evaluation, seven were seen via office visits, while 13 presented to the emergency room or were hospitalized. Two patients passed away in the hospital. No additional details are available. Are these case of primary ITP coincident with or secondary ITP as a result of vaccination? In either case, the clinical presentations and the favorable response to “ITP‐directed” therapies in most of the treated patients, such as corticosteroids and IVIG suggest an antibody‐mediated platelet clearance mechanism that is operative in ITP. Is the relationship between vaccination and thrombocytopenia coincident or causal? It is not surprising that 17 possible de novo cases would be detected among the well over 20 million people who have received at least one dose of these two vaccines in the United States as of February 2, 2021. This would be less than one case in a million vaccinated persons, consistent with the absence of cases seen in the more than 70 000 subjects enrolled in the combined Pfizer and Moderna vaccine trials. 5 , 6 If we assume that these reports identify 17 cases of secondary ITP that developed following vaccination, this extrapolates to 17 ×  6 (because only cases that occurred during the first 2 months [December 2020 – January 2021] following vaccine rollout are captured) × 15 to cover the fraction of the population that has been vaccinated [20 million of the 300+ million total US population]) = approximately 1500 cases of post‐vaccine secondary ITP/year. There are approximately 50 000 adults who are diagnosed with ITP in the US each year. If we explored the temporal relationship of the 17 cases occurring within 1‐2 weeks of vaccination, then we could extrapolate by multiplying by 26 or 52 weeks to look at the rate of ITP per year if the cases are totally ‘coincidental’. This would be approximately 39,000 to 78,000 cases of ITP per year which is not far from the estimated total baseline incidence per year. Thus, the incidence of an immune‐mediated thrombocytopenia post SARS‐CoV‐2 vaccination appears either less than or roughly comparable to what would be seen if the cases were coincidental following vaccination, perhaps enhanced somewhat by heightened surveillance of symptomatic patients. These estimates are very rough so this information should be considered very preliminary. It also assumes that all cases of clinically significant ITP are reported. The incidence of secondary ITP following other types of vaccines provides an inconsistent picture. It is estimated that approximately 1:40 000 children develop secondary ITP after receiving measles‐mumps‐rubella (MMR) vaccine. 7 Well‐documented cases of acquired immune thrombocytopenia have been reported after varicella and other vaccinations as well, including one described in this issue of the American Journal of Hematology following Shingrix recombinant Zoster vaccine. 8 , 9 , 10 On the other hand, the only case–controlled study of adult recipients of all vaccines published 10 years ago was interpreted as indicating no discernable increase in ITP within 1 year post vaccination. 11 In the absence of pre‐vaccination platelet counts and given the variable time post vaccination to discovery of thrombocytopenia, it is impossible to precisely estimate the incidence of secondary ITP post SARS‐CoV‐2 vaccination at this time. However, it is notable that all but one of the cases identified thus far occurred after the initial dose of SARS‐CoV‐2 vaccine. One would assume that if the vaccination was unrelated to development of ITP, case occurrences would divide more evenly between the two doses. It is also likely that the actual incidence of thrombocytopenia, including mild asymptomatic cases, may be higher and go unreported. Even in view of the uncertain relationship between SARS‐CoV‐2 vaccination and secondary ITP, it is worth considering possible mechanisms by which this might occur. Thrombocytopenia has been reported after treatment with some anti‐sense oligonucleotides, 12 , 13 but it would seem that a far higher, sustained level of RNA reaching dendritic cells in lymph nodes and elsewhere would be required to generate an immune response than is likely seen based on a single intramuscular injection. This is also inconsistent with the very rapid onset of thrombocytopenia in the index and additional cases. Another possibility is that some individuals may have pre‐formed antibodies, including those directed against poly‐ethylene‐glycol or to other components of the outer lipid layer of the nanoparticles. This presumes that antibodies directed against a novel antigen formed by attachment of vaccine particles on a small number of platelets trigger a reaction involving “all” platelets, which seems unlikely. Recent articles identified antibodies detected post Covid‐19 infection that activated platelets 14 and an ITP‐like syndrome following natural infection 15 , 16 ; both findings require confirmation and the relationship to the post vaccination ITP cases reported here is uncertain. Third, some patients may have had mild “compensated” thrombocytopenia of diverse causes, for example, pre‐existing ITP or hereditary thrombocytopenia. For example, one of the patients reported in this issue of the American Journal of Hematology had a documented borderline platelet count (145 × 109/L) 2 months prior to receipt of the vaccine raising the question of pre‐existing subclinical ITP. 3 The other patient reported in this issue of the American Journal of Hematology had chronic, hereditary thrombocytopenia, with a last known exacerbation 12 years prior to the present episode. 4 An additional patient identified in VAERS had platelets of 55–115 × 109/L in 2019. Severe thrombocytopenia in these patients or others may have been induced by enhancement of macrophage‐mediated clearance or impaired platelet production as part of a systemic inflammatory response to vaccination. 8 , 17 This is compatible with patients in whom severe thrombocytopenia was first noted 1–3 days post‐vaccination. Transient drops in platelet counts post vaccinations for influenza and other viruses is a not uncommon observation in patients with ITP and other causes of thrombocytopenia. Lastly, post‐vaccination ITP remains possible, especially in those with onset 1‐2 weeks after exposure. One patient in our series had a normal platelet count documented in the week prior to receipt of the vaccine and only developed symptomatology 13 days post vaccination compatible with vaccine related secondary ITP. The reported cases also provide insight into diagnosis and treatment. Most of the patients responded to treatment with corticosteroids and IVIG but showed little benefit from platelet transfusion, a pattern consistent with that of ITP. There was no response in the two patients treated with rituximab but they were only evaluable for up to 2 weeks; in addition, rituximab would impair the response to vaccination, if given within days to 2 weeks of the vaccination and for at least 4‐6 months subsequently. The first of two patients (with sufficient information available) continued to have a platelet count of 1–2 × 109/L and died of intracranial bleeding 16 days post vaccination and 13 days post presentation of ITP despite receiving platelet transfusions, steroids, IVIG, and rituximab. The second patient presented 1 day after vaccination and still had a count of 1 × 109/L 7 days later despite receiving the same combination of the four ITP treatments; however, she responded following addition of vincristine and romiplostim. The suggestion might be (from this very limited information) to give IVIG and high dose steroids as initial treatment. If this does not work and the platelet count remains very low, it would seem appropriate to institute other treatments within the first week including a thrombopoietic agent perhaps starting above the lowest dose often recommended to initate therapy and potentially vinca alkaloids depending upon response. Excluding rituximab from initial treatment seems appropriate in most cases given that response can take up to 8 weeks 18 and response to vaccination can be impaired. Once a platelet response is seen, patients could be managed as if they were typical cases of primary ITP. Whether such cases will prove to be self‐limiting or persist and lead to chronic ITP remains uncertain. In summary, we cannot exclude the possibility that the Pfizer and Moderna vaccines have the potential to trigger de novo ITP (including clinically undiagnosed cases), albeit very rarely. Distinguishing vaccine‐induced ITP from coincidental ITP presenting soon after vaccination is impossible at this time. Additional surveillance is needed to determine the true incidence of thrombocytopenia post vaccination. If the incidence of thrombocytopenia post vaccination is higher than that based on available case reports, we anticipate that many more cases will be reported in the coming weeks as a higher proportion of the population is vaccinated. It may be worthwhile to see whether exacerbations of other conditions considered to have an autoimmune pathophysiology occur as well to gain a better understanding of host response to vaccination. Notwithstanding these concerns, the incidence of symptomatic thrombocytopenia post vaccination is well below the risk of death and morbidity from SARS‐CoV‐2 infection as also described on the Platelet Disorder Support Association (PDSA) website in the statement from the Medical Advisory Board. We echo recommendations from the PDSA and the American Society of Hematology that strongly encourage reporting this and other potential complications through VAERS and in any other way deemed appropriate. Finally, we recommend immediately checking a platelet count in anyone who reports abnormal bleeding or bruising following vaccination and consulting a hematologist. Management of vaccination in patients with pre‐existing ITP is complex and is not explored here. The opinion of the Medical Advisory Board of PDSA is that in most, but not necessarily all, patients the benefit of vaccination exceeds the risk of exacerbating ITP. At this time, for patients with ITP it appears reasonable to obtain a baseline count before vaccination and then obtain additional platelet count(s) following vaccination based on patient clinical and treatment history. In patients who present with severe thrombocytopenia soon after vaccination in the absence of other likely causes, we believe it would be appropriate to pursue aggressive treatment for presumed ITP. Whether to administer a second dose of vaccine or whether a change to a different vaccine is warranted in patients who develop thrombocytopenia or substantial worsening of pre‐existing thrombocytopenia with the initial dose requires further study. AUTHOR CONTRIBUTIONS Eun‐Ju Lee, James B Bussel, and Douglas B Cines contributed to the data acquisition, interpretation of data and wrote the manuscript. Terry Gernsheimer, Craig Kessler, Marc Michel, Michael D Tarantino, John W Semple, Donald M Arnold, Bertrand Godeau, Michele P Lambert provided input on the manuscript and approved the final version for submission. 2 CONFLICT OF INTEREST E.L., and J.W.S. declare no conflict of interest. D.B.C. has received relevant research support from Alexion and Aplagon, and served as a consultant to Rigel, Dova, and CSL Behring. T.G. has received honoraria from Amgen; has acted as a consultant for Amgen, Dova Pharmaceuticals, Biogen, Cellphire, Fujifilm, Rigel, Shionogi, and Principia; and has received research support from Principia. C.K. has served on advisory boards for Novartis, Rigel, Dova, Pfizer. M.M. has received research support from GSK, and received fees from LFB. M.D.T. has received research funding from Grifols and Novo Nordisk; is on advisory boards for Biogen, Grifols, Kedrion, Novo Nordisk, Pfizer, and Takeda; is a speaker for Amgen, Grifols, Octapharma, and Takeda; and reviews grants for Pfizer. D.M.A. has received research funding from Novartis, Bristol‐Myers Squibb, and Rigel and has acted as a consultant for Novartis, Principia, and Rigel. B.G. served as an expert for Amgen, Novartis, LFB and Roche; has received research support from Amgen and Roche. M.P.L. has served on advisory boards for Octapharma and Shionogi, has acted as a consultant for Amgen, Novartis, Shionogi, Dova, Principia, Argenx, Rigel and Bayer, and has received research funding from Sysmex, Novartis, Rigel and Astra Zeneca. J.B.B. has served on advisory boards and/or consulted for Amgen, Novartis, Dova, Rigel, UCB, Argenx, Momenta, Regeneron, RallyBio, and CSL‐Behring. FUNDING INFORMATION None. 3 Supporting information Table S1: Patients with reported thrombocytopenia post SARS/CoV‐2 vaccination Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland

              Reports of ChAdOx1 vaccine–associated thrombocytopenia and vascular adverse events have led to some countries restricting its use. Using a national prospective cohort, we estimated associations between exposure to first-dose ChAdOx1 or BNT162b2 vaccination and hematological and vascular adverse events using a nested incident-matched case-control study and a confirmatory self-controlled case series (SCCS) analysis. An association was found between ChAdOx1 vaccination and idiopathic thrombocytopenic purpura (ITP) (0–27 d after vaccination; adjusted rate ratio (aRR) = 5.77, 95% confidence interval (CI), 2.41–13.83), with an estimated incidence of 1.13 (0.62–1.63) cases per 100,000 doses. An SCCS analysis confirmed that this was unlikely due to bias (RR = 1.98 (1.29–3.02)). There was also an increased risk for arterial thromboembolic events (aRR = 1.22, 1.12–1.34) 0–27 d after vaccination, with an SCCS RR of 0.97 (0.93–1.02). For hemorrhagic events 0–27 d after vaccination, the aRR was 1.48 (1.12–1.96), with an SCCS RR of 0.95 (0.82–1.11). A first dose of ChAdOx1 was found to be associated with small increased risks of ITP, with suggestive evidence of an increased risk of arterial thromboembolic and hemorrhagic events. The attenuation of effect found in the SCCS analysis means that there is the potential for overestimation of the reported results, which might indicate the presence of some residual confounding or confounding by indication. Public health authorities should inform their jurisdictions of these relatively small increased risks associated with ChAdOx1. No positive associations were seen between BNT162b2 and thrombocytopenic, thromboembolic and hemorrhagic events. New data from the EAVE II cohort in Scotland suggests that a first dose of the ChAdOx1 nCoV-19 vaccine might be associated with a small increase in the risk of idiopathic thrombocytopenic purpura between 0 and 27 d after vaccination.
                Bookmark

                Author and article information

                Contributors
                Journal
                Case Rep Infect Dis
                Case Rep Infect Dis
                CRIID
                Case Reports in Infectious Diseases
                Hindawi
                2090-6625
                2090-6633
                2021
                9 October 2021
                : 2021
                : 2704249
                Affiliations
                1Department of Internal Medicine, Wellstar Health System, Marietta, GA, USA
                2Northwest Georgia Oncology Centers, P.C Wellstar Health System, Marietta, GA, USA
                Author notes

                Academic Editor: Gloria Taliani

                Author information
                https://orcid.org/0000-0002-5961-3974
                https://orcid.org/0000-0002-6623-8762
                Article
                10.1155/2021/2704249
                8502103
                34635874
                9b428366-115d-4c63-8303-30b23ec2203f
                Copyright © 2021 Whitney Thomas et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 August 2021
                : 23 September 2021
                Categories
                Case Report

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article