4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer’s, and Parkinson’s disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood–brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1–0.2% of injected dose) of circulating antibodies into the brain. This article reviews the various methods currently used for antibody delivery to the CNS at the preclinical stage of development and the underlying mechanisms of BBB penetration. It also describes efforts to improve or modulate the physicochemical and biochemical properties of antibodies (e.g., charge, Fc receptor binding affinity, and target affinity), to adapt their pharmacokinetics (PK), and to influence their distribution and disposition into the brain. Finally, a distinction is made between approaches that seek to modify BBB permeability and those that use a physiological approach or antibody engineering to increase uptake in the CNS. Although there are currently inherent difficulties in developing safe and efficacious antibodies that will cross the BBB, the future prospects of brain-targeted delivery of antibody-based agents are believed to be excellent.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders

          The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery.

            One of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders is achieving sufficient blood-brain barrier (BBB) penetration. Research in the past few decades has revealed that the BBB is not only a substantial barrier for drug delivery to the CNS but also a complex, dynamic interface that adapts to the needs of the CNS, responds to physiological changes, and is affected by and can even promote disease. This complexity confounds simple strategies for drug delivery to the CNS, but provides a wealth of opportunities and approaches for drug development. Here, I review some of the most important areas that have recently redefined the BBB and discuss how they can be applied to the development of CNS therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies for delivering therapeutics across the blood–brain barrier

              Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 June 2021
                June 2021
                : 22
                : 12
                : 6442
                Affiliations
                Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; kouhi@ 123456usc.edu (A.K.); pachipul@ 123456usc.edu (V.P.); talya.kapenstein@ 123456gmail.com (T.K.); peisheng@ 123456usc.edu (P.H.); aepstein@ 123456usc.edu (A.L.E.)
                Author notes
                [* ]Correspondence: lkhawli@ 123456usc.edu
                Author information
                https://orcid.org/0000-0002-7346-2818
                Article
                ijms-22-06442
                10.3390/ijms22126442
                8235515
                34208575
                9af6c37a-640f-44f1-8d5f-ce38174cc596
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 18 May 2021
                : 11 June 2021
                Categories
                Review

                Molecular biology
                blood–brain barrier,antibody,pharmacokinetics,disposition,biochemical and physicochemical properties,fc binding,receptor-mediated transcytosis,brain shuttle,molecular trojan horse,transferrin

                Comments

                Comment on this article